Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability

被引:1
|
作者
Wu, Fan [1 ]
Bian, Wei [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonsmooth optimization; Smoothing method; Accelerated algorithm with extrapolation; Convergence rate; Sequential convergence; MONOTONE-OPERATORS; WEAK-CONVERGENCE; ALGORITHM; MINIMIZATION;
D O I
10.1007/s10957-023-02176-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a smoothing accelerated proximal gradient (SAPG) method with fast convergence rate for finding a minimizer of a decomposable nonsmooth convex function over a closed convex set. The proposed algorithm combines the smoothing method with the proximal gradient algorithm with extrapolation (k-1 )/(k+alpha -1 )and alpha > 3. The updating rule of smoothing parameter mu k is a smart scheme and guarantees the global convergence rate of o(ln(sigma) k/k) with sigma is an element of ((1)/(2), 1] on the objective function values. Moreover, we prove that the iterates sequence is convergent to an optimal solution of the problem. We then introduce an error term in the SAPG algorithm to get the inexact smoothing accelerated proximal gradient algorithm. And we obtain the same convergence results as the SAPG algorithm under the summability condition on the errors. Finally, numerical experiments show the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页码:539 / 572
页数:34
相关论文
共 50 条
  • [21] An Accelerated Smoothing Gradient Method for Nonconvex Nonsmooth Minimization in Image Processing
    Weina Wang
    Yunmei Chen
    Journal of Scientific Computing, 2022, 90
  • [22] On the global convergence of a nonmonotone proximal bundle method for convex nonsmooth minimization
    Hou, Liusheng
    Sun, Wenyu
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (02): : 227 - 235
  • [23] CONVERGENCE ANALYSIS OF PROXIMAL GRADIENT ALGORITHM WITH EXTRAPOLATION FOR A CLASS OF CONVEX NONSMOOTH MINIMIZATION PROBLEMS
    Pan, Mengxi
    Wen, Bo
    PACIFIC JOURNAL OF OPTIMIZATION, 2023, 19 (03): : 477 - 487
  • [24] On the Convergence of Proximal Gradient Methods for Convex Simple Bilevel Optimization
    Puya Latafat
    Andreas Themelis
    Silvia Villa
    Panagiotis Patrinos
    Journal of Optimization Theory and Applications, 2025, 204 (3)
  • [25] An accelerated proximal gradient method for multiobjective optimization
    Hiroki Tanabe
    Ellen H. Fukuda
    Nobuo Yamashita
    Computational Optimization and Applications, 2023, 86 : 421 - 455
  • [26] An accelerated proximal gradient method for multiobjective optimization
    Tanabe, Hiroki
    Fukuda, Ellen H.
    Yamashita, Nobuo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (02) : 421 - 455
  • [27] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Maryam Yashtini
    Journal of Global Optimization, 2022, 84 : 913 - 939
  • [28] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [29] Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization
    Yashtini, Maryam
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (04) : 913 - 939
  • [30] PROXIMAL GRADIENT METHOD FOR NONSMOOTH OPTIMIZATION OVER THE STIEFEL MANIFOLD
    Chen, Shixiang
    Ma, Shiqian
    So, Anthony Man-Cho
    Zhang, Tong
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 210 - 239