Pinus pinaster Diameter, Height, and Volume Estimation Using Mask-RCNN

被引:0
|
作者
Malta, Ana [1 ,2 ]
Lopes, Jose [3 ]
Salas-Gonzalez, Raul [1 ,4 ]
Fidalgo, Beatriz [1 ,4 ]
Farinha, Torres [1 ,3 ]
Mendes, Mateus [1 ,3 ]
机构
[1] ISEC, RCM2 Res Ctr Asset Management & Syst Engn, IPC, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[2] Univ Beira Interior, CISE Electromechatron Syst Res Ctr, P-6201001 Covilha, Portugal
[3] Coimbra Inst Engn, Polytech Inst Coimbra, Rua Pedro Nunes Quinta Nora, P-3030199 Coimbra, Portugal
[4] Polytech Inst Coimbra, Coimbra Agr Sch, P-3045601 Coimbra, Portugal
关键词
Pinus pinaster; wood volume; pine tree volume; Mask R-CNN; FOREST;
D O I
10.3390/su152416814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pinus pinaster, commonly called the maritime pine, is a vital species in Mediterranean forests. Its ability to thrive in the local climate and rapid growth make it an essential resource for wood production and reforestation efforts. Accurately estimating the volume of wood within a pine forest is of great significance to the wood industry. The traditional process is either a rough estimation without measurements or a time-consuming process based on manual measurements and calculations. This article presents a method for determining a tree's diameter, total height, and volume based on a photograph. The method involves placing reference targets of known dimensions on the trees. A deep learning neural network is used to extract the tree trunk and the targets from the background, and the dimensions of the trunk are estimated based on the dimensions of the targets. The results indicate less than 10% estimation errors for diameter, height, and volume in general. The proposed methodology automates the estimation of the dendrometric characteristics of trees, reducing field time consumed in a forest inventory and without the need to use nonprofessional instruments.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Mask FORD-NET: Efficient Detection of Digital Image Forgery using Hybrid REG-NET based Mask-RCNN
    Whitin, Priscilla
    Sivakumar, S.
    Geetha, M.
    Devaki, M.
    Bhuvanesh, A.
    Balasubramaniyan, Kiruthiga
    Ahilan, A.
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (10) : 829 - 835
  • [32] NONLINEAR MIXED-EFFECT HEIGHT-DIAMETER MODEL FOR Pinus pinaster AIT. AND Pinus radiata D. DON
    Oganata, Friday Nwabueze
    Corral-Rivas, Sacramento
    Javier Gorgoso-Varela, Jose
    CERNE, 2020, 26 (01) : 150 - 161
  • [33] Using the Mask-RCNN Convolutional Neural Network to Automate the Construction of Two-Dimensional Solid Vertebral Models
    Beskrovny, A. S.
    Bessonov, L., V
    Lvanov, D., V
    Kirillova, I., V
    Kossovich, L. Yu
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2020, 20 (04): : 502 - 516
  • [34] Age trends in variances and heritabilities for diameter and height in maritime pine (Pinus pinaster Ait.) in Western Australia
    Kusnadar, D
    Galwey, NW
    Hertzler, GL
    Butcher, TB
    SILVAE GENETICA, 1998, 47 (2-3) : 136 - 141
  • [35] Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery Using Mask-RCNN and a Mosaicking Approach
    Carvalho, Osmar Luiz Ferreira de
    de Carvalho Junior, Osmar Abilio
    Albuquerque, Anesmar Olino de
    Bem, Pablo Pozzobon de
    Silva, Cristiano Rosa
    Ferreira, Pedro Henrique Guimaraes
    Moura, Rebeca dos Santos de
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    Borges, Dibio Leandro
    REMOTE SENSING, 2021, 13 (01) : 1 - 24
  • [36] An efficient lung disease classification from X-ray images using hybrid Mask-RCNN and BiDLSTM
    Indumathi, Varadharajan
    Siva, Rathinavelayutham
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 81
  • [37] Multiple-Object Detection and Segmentation Based on Deep Learning in High-Resolution Video Using Mask-RCNN
    Rajjak, Shaikh Shakil Abdul
    Kureshi, A. K.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (13)
  • [38] Narrow gap deviation detection in Keyhole TIG welding using image processing method based on Mask-RCNN model
    Chen, Yunke
    Shi, Yonghua
    Cui, Yanxin
    Chen, Xiyin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (7-8): : 2015 - 2025
  • [39] SITE QUALITY ESTIMATION USING HEIGHT AND DIAMETER
    STOUT, BB
    SHUMWAY, DL
    FOREST SCIENCE, 1982, 28 (03) : 639 - 645
  • [40] Historical Text Line Segmentation Using Deep Learning Algorithms: Mask-RCNN against U-Net Networks
    Fizaine, Florian Come
    Bard, Patrick
    Paindavoine, Michel
    Robin, Cecile
    Bouye, Edouard
    Lefevre, Raphael
    Vinter, Annie
    JOURNAL OF IMAGING, 2024, 10 (03)