Design of lightweight Ti3Zr1.5NbVx refractory high- entropy alloys with superior mechanical properties

被引:15
|
作者
Xiao, Yake [1 ]
Peng, Xianghe [1 ,2 ]
机构
[1] Chongqing Univ, Dept Engn Mech, Chongqing 400044, Peoples R China
[2] Chongqing Univ, State Key Lab Coal Min Disaster Dynam & Control, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Lightweight; Refractory high -entropy alloys; Microstructure; Mechanical properties; Deformation mechanism; SOLID-SOLUTION PHASE; STABILITY;
D O I
10.1016/j.jmrt.2023.09.283
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refractory high-entropy alloys (RHEAs) have attracted extensive attention due to their excellent mechanical properties. However, most RHEAs have high density and exhibit poor ductility at room temperature, which greatly limits their applications. In this work, a series of lightweight Ti3Zr1.5NbVx (x = 0,1 and 2, respectively) RHEAs with high strength and good ductility were designed and prepared using vacuum arc melting. The effects of V content on the microstructure, mechanical properties and deformation mechanism of the as-cast Ti3Zr1.5NbVx RHEAs were investigated in details. The results showed that all the Ti3Zr1.5-NbVx RHEAs exhibit a single body-centered cubic (BCC) phase and their densities are less than 6 g/cm3. With the increase of V content, the grain size of the Ti3Zr1.5NbVx RHEAs decreases from 436.1 to 81.2 mm, and the hardness increases from 199.7 to 297.5 HV. The Ti3Zr1.5NbV2 RHEA possesses optimal tensile mechanical properties with the yield strength of 974.0 MPa, fracture elongation of 6.3%, and a specific yield strength of 165.7 MPa cm3/g, better than most previously reported RHEAs. More importantly, the Ti3Zr1.5NbV2 RHEA also exhibits excellent elevated-temperature mechanical properties with yield strength of 770.9 MPa at 600 degrees C and 243.6 MPa at 800 degrees C. The deformation mechanism of the Ti3Zr1.5-NbV2 RHEA is governed by dislocation slip, including planar slip bands, dislocation loops, and high density dislocation walls. The high strength of the Ti3Zr1.5NbV2 RHEA is mainly attributed to the solid solution strengthening effect, in which Zr and V elements play an important role.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:330 / 341
页数:12
相关论文
共 50 条
  • [41] Effect of alloying elements on the structure and mechanical properties of NbMoTaWX (X = Cr, V, Ti, Zr, and Hf) refractory high-entropy alloys
    Liu, Haibo
    Liu, Lei
    Xin, Cunlin
    AIP ADVANCES, 2021, 11 (02)
  • [42] Microstructure and mechanical properties of multi-phase reinforced Hf-Mo-Nb-Ti-Zr refractory high-entropy alloys
    Gao, Xujie
    Wang, Liang
    Guo, Nana
    Luo, Liangshun
    Zhu, Guangming
    Shi, Chengcheng
    Su, Yanqing
    Guo, Jingjie
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2022, 102
  • [43] Enhanced mechanical properties of lightweight refractory high-entropy alloys at elevated temperatures via Si addition
    Wang, Tiantian
    Jiang, Wentao
    Wang, Xiaohong
    Jiang, Bo
    Wang, Ye
    Wang, Xin
    Xu, Hongyu
    Hu, Maoliang
    Zhu, Dongdong
    MATERIALS CHARACTERIZATION, 2024, 218
  • [44] Microstructure and Mechanical Properties of the Ductile Al–Ti–Mo–Nb–V Refractory High Entropy Alloys
    Grzegorz Cieślak
    Juliusz Dąbrowa
    Monika Jawańska
    Agnieszka Parzuchowska
    Dariusz Oleszak
    Metallurgical and Materials Transactions A, 2022, 53 : 653 - 662
  • [45] Effect of Ti and Nb Contents on Microstructure and Mechanical Properties of HfZrVTaMoWTixNby Refractory High-Entropy Alloys
    Yao, Hongwei
    Miao, Junwei
    Liu, Yongmiao
    Guo, Enyu
    Huang, He
    Lu, Yiping
    Wang, Tongmin
    Li, Tingju
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (08)
  • [46] Machine learning assisted design of novel refractory high entropy alloys with enhanced mechanical properties
    Catal, A. A.
    Bedir, E.
    Yilmaz, R.
    Swider, M. A.
    Lee, C.
    El-Atwani, O.
    Maier, H. J.
    Ozdemir, H. C.
    Canadinc, D.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 231
  • [47] Two novel Zr-rich refractory high-entropy alloys with excellent tensile mechanical properties
    Ma, Yaxi
    Zhang, Yang
    Zhang, Zhongwu
    Liu, Liyuan
    Sun, Lixin
    INTERMETALLICS, 2023, 157
  • [48] The Microstructure and Mechanical Properties of Refractory High-Entropy Alloys with High Plasticity
    Chen, Yiwen
    Li, Yunkai
    Cheng, Xingwang
    Wu, Chao
    Cheng, Bo
    Xu, Ziqi
    MATERIALS, 2018, 11 (02)
  • [49] Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys (x=0, 0.5, 1.0) fabricated by the powder metallurgy process
    Kang, Byungchul
    Kong, Taeyeong
    Ryu, Ho Jin
    Hong, Soon Hyung
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 69 : 32 - 41
  • [50] Microstructure and Mechanical Properties of TaNbVTiAlx Refractory High-Entropy Alloys
    Xiang, Li
    Guo, Wenmin
    Liu, Bin
    Fu, Ao
    Li, Jianbo
    Fang, Qihong
    Liu, Yong
    ENTROPY, 2020, 22 (03)