Estimation of Soil Characteristics from Multispectral Sentinel-3 Imagery and DEM Derivatives Using Machine Learning

被引:2
|
作者
Piccoli, Flavio [1 ]
Barbato, Mirko Paolo [1 ]
Peracchi, Marco [1 ]
Napoletano, Paolo [1 ,2 ]
机构
[1] Univ Milano Bicocca, Dept Informat Syst & Commun, I-20126 Milan, Italy
[2] Ist Nazl Fis Nucleare, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy
关键词
digital soil mapping; machine learning; multispectral sensing; Sentinel-3; digital elevation model; TEXTURE;
D O I
10.3390/s23187876
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this paper, different machine learning methodologies have been evaluated for the estimation of the multiple soil characteristics of a continental-wide area corresponding to the European region, using multispectral Sentinel-3 satellite imagery and digital elevation model (DEM) derivatives. The results confirm the importance of multispectral imagery in the estimation of soil properties and specifically show that the use of DEM derivatives improves the quality of the estimates, in terms of R2, by about 19% on average. In particular, the estimation of soil texture increases by about 43%, and that of cation exchange capacity (CEC) by about 65%. The importance of each input source (multispectral and DEM) in predicting the soil properties using machine learning has been traced back. It has been found that, overall, the use of multispectral features is more important than the use of DEM derivatives with a ration, on average, of 60% versus 40%.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Prediction of Antioxidant Activity of Cherry Fruits from UAS Multispectral Imagery Using Machine Learning
    Karydas, Christos
    Iatrou, Miltiadis
    Kouretas, Dimitrios
    Patouna, Anastasia
    Iatrou, George
    Lazos, Nikolaos
    Gewehr, Sandra
    Tseni, Xanthi
    Tekos, Fotis
    Zartaloudis, Zois
    Mainos, Evangelos
    Mourelatos, Spiros
    ANTIOXIDANTS, 2020, 9 (02)
  • [22] DEM Densification Using Perspective Shape From Shading Through Multispectral Imagery
    Chen, Zhe
    Qin, Qianqing
    Lin, Liyu
    Liu, Qiong
    Zhan, Wenfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (01) : 145 - 149
  • [23] Pre-Harvest Corn Grain Moisture Estimation Using Aerial Multispectral Imagery and Machine Learning Techniques
    Jjagwe, Pius
    Chandel, Abhilash K.
    Langston, David
    LAND, 2023, 12 (12)
  • [24] Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning
    Yu, Haiyang
    Xie, Saifei
    Liu, Peng
    Hua, Zhihua
    Song, Caoyuan
    Jing, Peng
    REMOTE SENSING, 2023, 15 (09)
  • [25] Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence
    Saeidi, Vahideh
    Seydi, Seyd Teymoor
    Kalantar, Bahareh
    Ueda, Naonori
    Tajfirooz, Bahman
    Shabani, Farzin
    GEOMATICS NATURAL HAZARDS & RISK, 2023, 14 (01)
  • [26] Evaluation of TsHARP Utility for Thermal Sharpening of Sentinel-3 Satellite Images Using Sentinel-2 Visual Imagery
    Huryna, Hanna
    Cohen, Yafit
    Karnieli, Arnon
    Panov, Natalya
    Kustas, William P.
    Agam, Nurit
    REMOTE SENSING, 2019, 11 (19)
  • [27] Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
    Shahabi, Hejar
    Rahimzad, Maryam
    Piralilou, Sepideh Tavakkoli
    Ghorbanzadeh, Omid
    Homayouni, Saied
    Blaschke, Thomas
    Lim, Samsung
    Ghamisi, Pedram
    REMOTE SENSING, 2021, 13 (22)
  • [28] Mapping particulate organic carbon in lakes across China using OLCI/ Sentinel-3 imagery
    Liu, Dong
    Yu, Shujie
    Wilson, Harriet
    Shi, Kun
    Qi, Tianci
    Luo, Wenlei
    Duan, Mengwei
    Qiu, Zhiqiang
    Duan, Hongtao
    WATER RESEARCH, 2024, 250
  • [29] High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms
    Zhou, Tao
    Geng, Yajun
    Chen, Jie
    Pan, Jianjun
    Haase, Dagmar
    Lausch, Angela
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 729
  • [30] Spatiotemporal variation in biomass abundance of different algal species in Lake Hulun using machine learning and Sentinel-3 images
    Yan, Zhaojiang
    Fang, Chong
    Song, Kaishan
    Wang, Xiangyu
    Wen, Zhidan
    Shang, Yingxin
    Tao, Hui
    Lyu, Yunfeng
    SCIENTIFIC REPORTS, 2025, 15 (01):