Optically transparent conformal ultra-broadband metamaterial absorber based on ITO conductive film

被引:8
|
作者
Ji, Shijun [1 ,2 ]
Ren, Hailin [1 ,2 ]
Zhang, Chenguang [1 ,2 ]
Zhao, Ji [1 ,2 ,3 ]
Wu, Han [1 ,2 ]
Dai, Handa [1 ,2 ]
机构
[1] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130025, Peoples R China
[2] Jilin Univ, Key Lab CNC Equipment Reliabil, Minist Educ, Changchun, Peoples R China
[3] Northeastern Univ, Sch Mech Engn & Automat, Shenyang 110167, Peoples R China
基金
中国国家自然科学基金;
关键词
metamaterial; absorber; broadband; conformal; transparent;
D O I
10.1088/1361-6463/ace6b2
中图分类号
O59 [应用物理学];
学科分类号
摘要
An optically transparent metamaterial absorber with polarization insensitivity and wide-angle absorption is proposed. The absorber, which consists of an indium tin oxide resistive film and a low-loss substrate, is optically transparent and conformal. By tuning the reflection response of the frequency-selective surface and the thickness of the spacer layer, the whole structure achieves an absorption of more than 97% in the range of 6.54-18.66 GHz. Numerical simulation results show that the absorber can still maintain an absorption rate of more than 85% in a wide range of oblique incidence angles from 0 & DEG; to 60 & DEG;. In addition, the intrinsic physical mechanism of the absorber is elucidated using the impedance matching theory and the distribution of surface currents. The ratio of dielectric loss and ohmic loss is also quantitatively analyzed. Finally, the reflection and transmission coefficients of the sample were measured in a microwave anechoic chamber, which showed a good agreement with the simulation results. This design uses a low-resistivity resistive film as a frequency-selective surface, which was rarely involved in previous studies, and provides a new idea for future design and application.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Solar energy harvesting with ultra-broadband metamaterial absorber
    Bagmanci, Mehmet
    Karaaslan, Muharrem
    Unal, Emin
    Akgol, Oguzhan
    Bakir, Mehmet
    Sabah, Cumali
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (08):
  • [32] An ultra-broadband metamaterial absorber based on the hybrid materials in the visible region
    Xinyan Ling
    Zhongyin Xiao
    Xiaoxia Zheng
    Optical and Quantum Electronics, 2017, 49
  • [33] Ultra-broadband near-infrared metamaterial absorber
    Ding, Fei
    Jin, Yi
    He, Sailing
    2012 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2012,
  • [34] A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure
    Rina Dao
    Xinru Kong
    Hai-Feng Zhang
    Xingliang Tian
    Plasmonics, 2020, 15 : 169 - 175
  • [35] Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion
    Zhang, Jiaqi
    Wu, Xiaoyu
    Liu, Liyuan
    Huang, Cheng
    Chen, Xieyu
    Tian, Zhen
    Ouyang, Chunmei
    Gu, Jianqiang
    Zhang, Xueqian
    He, Mingxia
    Han, Jiaguang
    Luo, Xiangang
    Zhang, Weili
    OPTICS EXPRESS, 2019, 27 (18): : 25595 - 25602
  • [36] Design of an ultra-broadband microwave metamaterial absorber based on multilayer structures
    Yao, Xin
    Huang, Yunqiang
    Li, Guanya
    He, Qingting
    Chen, Haiyan
    Weng, Xiaolong
    Liang, Difei
    Xie, Jianliang
    Deng, Longjiang
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2022, 32 (08)
  • [37] A Tunable Ultra-Broadband Metamaterial Absorber with Multilayered Structure
    Dao, Rina
    Kong, Xinru
    Zhang, Hai-Feng
    Tian, Xingliang
    PLASMONICS, 2020, 15 (01) : 169 - 175
  • [38] A thermal-insensitive ultra-broadband metamaterial absorber
    Bai, Ningfeng
    Zhong, Fuxian
    Shen, Jingxuan
    Fan, Hehong
    Sun, Xiaohan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (09)
  • [39] A tunable polarization insensitive ultra-broadband absorber based on the plasma metamaterial
    Kong, Xin-Ru
    Zhang, Hai-Feng
    Dao, Ri-Na
    Liu, Guo-Biao
    OPTICS COMMUNICATIONS, 2019, 453
  • [40] Design of an ultra-broadband absorber based on plasma metamaterial and lumped resistors
    Zhang, Haifeng
    Yang, Jing
    Zhang, Hao
    Liu, Jiaxuan
    OPTICAL MATERIALS EXPRESS, 2018, 8 (08): : 2103 - 2113