Self-Powered Triboelectric Nanogenerator for Security Applications

被引:16
|
作者
Munirathinam, Prabavathi [1 ]
Chandrasekhar, Arunkumar [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Dept Sensors & Biomed Technol, Nanosensors & Nanoenergy Lab,Sensor Syst Lab, Vellore 632014, Tamil Nadu, India
关键词
sliding; triboelectric; self-powered; biomechanical energy; security; ENERGY; OPTIMIZATION;
D O I
10.3390/mi14030592
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Valuable jewels, documents, and files left in hotel rooms by guests can be stolen at any time by an unauthorized person. This could have a serious psychological and economic impact on the guests. The house/hotel owners should make efforts to prevent theft from occurring. In this study, a self-powered sliding-mode triboelectric nanogenerator (TENG) is used as a sensor on a drawer. It is fixed to the side of the drawer and works in the lateral sliding mode. The electricity generated by the device during the push-pull action of the draw is similar to 125 V and F similar to 12.5 mu A. An analysis of the electrical performance was carried out using PET, paper, and nitrile as sliding materials. The electrical output from the device is used to notify the guest or hotel owner of any theft by an unidentified individual via Arduino and node MCU devices. Finally, this device can be helpful at night and can be extended using different materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Nanogenerator for self-powered biomedical applications
    Zhu, Guang
    Li, Zhou
    Yang, Rusen
    Wang, Zhonglin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [22] Nanogenerator applications: Self-powered systems
    Pu X.
    Liu J.
    Li S.
    Wei D.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (06): : 967 - 988
  • [23] Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator
    Li, Jiayu
    Liu, Boxun
    Liang, Chuangjian
    Wan, Lingyu
    Wei, Wenjuan
    Gao, Hongqiang
    Li, Mingyang
    Li, Yahui
    Ding, Wangyang
    Qu, Hang
    Wen, Honggui
    Yu, Fang
    Yao, Huilu
    Liu, Guanlin
    Peng, Biaolin
    Lu, Xiang
    NANO ENERGY, 2022, 101
  • [24] A Triboelectric Nanogenerator Array for a Self-Powered Boxing Sensor System
    Feng Gao
    Junwei Yao
    Cheng Li
    Lianwen Zhao
    Journal of Electronic Materials, 2022, 51 : 3308 - 3316
  • [25] Self-powered liquid crystal lens based on a triboelectric nanogenerator
    Chen, Wandi
    Wang, Wenwen
    Li, Shiyao
    Kang, Jiaxin
    Zhang, Yongai
    Yan, Qun
    Guo, Tailiang
    Zhou, Xiongtu
    Wu, Chaoxing
    NANO ENERGY, 2023, 107
  • [26] Perspectives on self-powered respiration sensor based on triboelectric nanogenerator
    Chen, Yanmeng
    Li, Weixiong
    Chen, Chunxu
    Tai, Huiling
    Xie, Guangzhong
    Jiang, Yadong
    Su, Yuanjie
    APPLIED PHYSICS LETTERS, 2021, 119 (23)
  • [27] Triboelectric nanogenerator for self-powered systems and active sensor networks
    Lin, Long
    Wang, Sihong
    Wang, Zhong L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [28] Self-powered digital microfluidics driven by rotational triboelectric nanogenerator
    Yang, Ta-Jen
    Lin, Zong-Hong
    Lu, Yen-Wen
    NANO ENERGY, 2023, 110
  • [29] Self-Powered Piezoelectric Actuation Systems Based on Triboelectric Nanogenerator
    Zheng, Zhipeng
    Wang, Binquan
    Yin, Hao
    Chen, Yujie
    Bao, Yi
    Guo, Yiping
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (41)
  • [30] Advanced triboelectric nanogenerator based self-powered electrochemical system
    Xuan, Ningning
    Song, Chunhui
    Cheng, Gang
    Du, Zuliang
    Chemical Engineering Journal, 2024, 481