Cluster ensemble selection and consensus clustering: A multi-objective optimization approach

被引:1
|
作者
Aktas, Dilay [1 ]
Lokman, Banu [2 ]
Inkaya, Tulin [3 ]
Dejaegere, Gilles [4 ]
机构
[1] Ctr Ind Management, KU Leuven, Celestijnenlaan 300, B-3001 Leuven, Belgium
[2] Univ Portsmouth, Ctr Operat Res & Logist, Sch Org Syst & People, Portsmouth PO1 3DE, England
[3] Bursa Uludag Univ, Dept Ind Engn, TR-16240 Nilufer, Bursa, Turkiye
[4] Univ Libre Bruxelles, Serv Math Gest, Blvd Triomphe CP 210-01, B-1050 Brussels, Belgium
关键词
Multiple objective programming; Cluster ensembles; Ensemble selection; Consensus clustering; QUALITY; DIVERSITY; MODEL;
D O I
10.1016/j.ejor.2023.10.029
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Cluster ensembles have emerged as a powerful tool to obtain clusters of data points by combining a library of clustering solutions into a consensus solution. In this paper, we address the cluster ensemble selection problem and design a multi -objective optimization -based solution framework to produce consensus solutions. Given a library of clustering solutions, we first design a preprocessing procedure that measures the agreement of each clustering solution with the other solutions and eliminates the ones that may mislead the process. We then develop a multi -objective optimization algorithm that selects representative clustering solutions from the preprocessed library with respect to size, coverage, and diversity criteria and combines them into a single consensus solution, for which the true number of clusters is assumed to be unknown. We conduct experiments on different benchmark data sets. The results show that our approach yields more accurate consensus solutions compared to full -ensemble and the existing approaches for most data sets. We also present an application on the customer segmentation problem, where our approach is used to segment customers and to find a consensus solution for each
引用
收藏
页码:1065 / 1077
页数:13
相关论文
共 50 条
  • [31] A multi-objective feature selection approach based on chemical reaction optimization
    Qiu, Jianfeng
    Xiang, Xiaoshu
    Wang, Chao
    Zhang, Xingyi
    APPLIED SOFT COMPUTING, 2021, 112
  • [32] A Practical Approach to Subset Selection for Multi-objective Optimization via Simulation
    Currie, Christine S. M.
    Monks, Thomas
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (04):
  • [33] Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach
    Xue, Bing
    Zhang, Mengjie
    Browne, Will N.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (06) : 1656 - 1671
  • [34] Semi-Supervised Clustering Ensemble Based on Cluster Consensus Selection
    Liu, Yanxi
    Al-Khafaji, Ali Hussein Demin
    CYBERNETICS AND SYSTEMS, 2025, 56 (03) : 213 - 241
  • [35] Multi-objective clustering ensemble for gene expression data analysis
    Faceli, Katti
    de Souto, Marcilio C. R.
    de Araujo, Daniel S. A.
    de Carvalho, Andre C. P. L. F.
    NEUROCOMPUTING, 2009, 72 (13-15) : 2763 - 2774
  • [36] Multi-objective genetic model for co-clustering ensemble
    Zhong, Yuxin
    Wang, Hongjun
    Yang, Wenlu
    Wang, Luqing
    Li, Tianrui
    APPLIED SOFT COMPUTING, 2023, 135
  • [37] A consensus multi-view multi-objective gene selection approach for improved sample classification
    Sudipta Acharya
    Laizhong Cui
    Yi Pan
    BMC Bioinformatics, 21
  • [38] A consensus multi-view multi-objective gene selection approach for improved sample classification
    Acharya, Sudipta
    Cui, Laizhong
    Pan, Yi
    BMC BIOINFORMATICS, 2020, 21 (Suppl 13)
  • [39] A Novel Multi-objective Approach to Fuzzy Clustering
    Spolaor, Simone
    Fuchs, Caro
    Kaymak, Uzay
    Nobile, Marco S.
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 850 - 857
  • [40] Multi-Objective Complete Fuzzy Clustering Approach
    Shahsamandi, Parastou E.
    Sadi-nezhad, Soheil
    Saghaei, Abbas
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2017, 23 (02): : 285 - 294