C@SnS2 core-shell 0D/2D nanocomposite with excellent electrochemical performance as lithium-ion battery anode

被引:2
|
作者
Jin, Changqing [1 ]
Wei, Yongxing [1 ]
Nan, Ruihua [1 ]
Jian, Zengyun [1 ]
Ding, Qingping [2 ,3 ]
机构
[1] Xian Technol Univ, Sch Mat & Chem Engn, Shaanxi Key Lab Optoelect Funct Mat & Devices, Xian 710021, Peoples R China
[2] Iowa State Univ, US DOE, Ames Natl Lab, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Anode material; SnS2; Heterojunction; Carbon; HIGH REVERSIBLE CAPACITY; SNS2; NANOSHEETS; SNS2/GRAPHENE HYBRID; GRAPHENE; MICROSPHERES; COMPOSITES;
D O I
10.1016/j.electacta.2023.143747
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
C@SnS2 core -shell 0D/2D nanocomposite was successfully prepared by a one-step hydrothermal method. The SnS2 nanosheets were heterogeneously nucleated and grown on the surface of carbon spheres. As an anode for lithium -ion batteries, the electrochemical performance of the C@SnS2 composite outperforms that of SnS2 nanoflowers. After 100 cycles, the reversible discharge specific capacity reaches an impressive value of 802 mAh g-1 at a current density of 100 mA g-1. Even after 600 cycles, the discharge specific capacity remains a value of 442 mAh g-1, under a high current density of 1 A g-1. This remarkable lithium -ion storage performance can be attributed to the unique core -shell nanostructure and the synergy between SnS2 nanosheets and carbon spheres. This study advances our understanding of the vital role of carbon in fabricating nano-heterojunction or composite electrodes and provides a feasible route to significantly improve the electrochemical properties of SnS2 and other metal sulfides.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] 2D layered mesoporous MoO2/rGO composites for high performance anode materials in lithium-ion battery
    Wang, Shasha
    Liu, Baocang
    Zhi, Guolei
    Xu, Guangran
    Wang, Qin
    Zhang, Jun
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 246 : 14 - 23
  • [32] Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode
    Chang, Kun
    Wang, Zhen
    Huang, Guochuang
    Li, He
    Chen, Weixiang
    Lee, Jim Yang
    JOURNAL OF POWER SOURCES, 2012, 201 : 259 - 266
  • [33] In situ synthesis of concentric C@MoS2 core-shell nanospheres as anode for lithium ion battery
    Li, Nan
    Liu, Zhipeng
    Gao, Qian
    Li, Xiaotian
    Wang, Runwei
    Yan, Xiao
    Li, Yanjuan
    JOURNAL OF MATERIALS SCIENCE, 2017, 52 (22) : 13183 - 13191
  • [34] Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode
    Yan, Zhilin
    Liu, Jiyang
    Lin, Yangfan
    Deng, Zheng
    He, Xueqin
    Ren, Jianguo
    He, Peng
    Pang, Chunlei
    Xiao, Chengmao
    Yang, Deren
    Yu, Haojie
    Du, Ning
    ELECTROCHIMICA ACTA, 2021, 390
  • [35] Electrostatic Self-assembly of 0D–2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries
    Huan Liu
    Xin Zhang
    Yifan Zhu
    Bin Cao
    Qizhen Zhu
    Peng Zhang
    Bin Xu
    Feng Wu
    Renjie Chen
    Nano-Micro Letters, 2019, 11
  • [36] FexP/C core-shell nanocubes with large inner void space for advanced lithium-ion battery anode
    Zhang, Min
    Wang, Huijun
    Li, Qin
    Feng, Jing
    Chai, Yaqin
    Yuan, Ruo
    Yang, Xia
    APPLIED SURFACE SCIENCE, 2018, 453 : 56 - 62
  • [37] 100 K cycles: Core-shell H-FeS@C based lithium-ion battery anode
    Chen, Suhua
    Fan, Ling
    Xu, Lingling
    Liu, Qian
    Qin, Yong
    Lu, Bingan
    ENERGY STORAGE MATERIALS, 2017, 8 : 20 - 27
  • [38] Preparation and electrochemical performance of SnO2@carbon nanotube core-shell structure composites as anode material for lithium-ion batteries
    Zhang, Hongkun
    Song, Huaihe
    Chen, Xiaohong
    Zhou, Jisheng
    Zhang, Huijuan
    ELECTROCHIMICA ACTA, 2012, 59 : 160 - 167
  • [39] Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode
    Lin, Heng-Yi
    Li, Cheng-Hung
    Wang, Di-Yan
    Chen, Chia-Chun
    NANOSCALE, 2016, 8 (03) : 1280 - 1287
  • [40] Sn-Al core-shell nanocomposite as thin film anode for lithium-ion batteries
    Wei, Lin
    Zhang, Kai
    Tao, Zhanliang
    Chen, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 644 : 742 - 749