Computing Dirichlet eigenvalues of the Schrödinger operator with a PT-symmetric optical potential

被引:2
|
作者
Nur, Cemile [1 ]
机构
[1] Yalova Univ, Dept Comp Engn, Yalova, Turkiye
关键词
Eigenvalue estimations; Dirichlet boundary conditions; PT-symmetric optical potentials;
D O I
10.1186/s13661-023-01787-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide estimates for the eigenvalues of non-self-adjoint Sturm-Liouville operators with Dirichlet boundary conditions for a shift of the special potential 4cos(2)x+4iV sin2x that is a PT-symmetric optical potential, especially when |c|=| root 1-4V(2)<2 or correspondingly 0 <= V < root 5-/2. We obtain some useful equations for calculating Dirichlet eigenvalues also for |c|>= 2|or equally V >= 5-root/2. We discuss our results by comparing them with the periodic and antiperiodic eigenvalues of the Schr & ouml;dinger operator. We even approximate complex eigenvalues by the roots of some polynomials derived from some iteration formulas. Moreover, we give a numerical example with error analysis.
引用
收藏
页数:19
相关论文
共 50 条