OPTIMIZED NEURON TRACING USING POST HOC REANALYSIS

被引:0
|
作者
Azzouz, Sara [1 ]
Walker, Logan A. [2 ,3 ]
Doerner, Alexandra [4 ]
Geisel, Kellie L. [5 ]
Rivera, Arianna K. Rodriguez [2 ]
Li, Ye [6 ]
Roossien, Douglas H. [4 ]
Cai, Dawen [2 ,6 ,7 ]
机构
[1] Univ Michigan, EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Biophys, Ann Arbor, MI 48109 USA
[3] Michigan Med, Bioinformat, Ann Arbor, MI USA
[4] Ball State Univ, Dept Biol, Muncie, IN USA
[5] Yale Univ, Biol Program, New Haven, CT USA
[6] Michigan Med, Cell & Dev Biol, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Michigan Neurosci Inst, Ann Arbor, MI 48109 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Neurons; Brainbow; Microscopy;
D O I
10.1109/ISBI53787.2023.10230710
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the last decade, the advances in Brainbow labeling allowed labeling hundreds of neurons with distinct colors in the same field of view of a brain [1, 2]. Reconstruction (or "tracing") of the 3D structures of these images has been enabled by a growing set of software tools for automatic and manual annotation. It is common, however, to have errors introduced by heuristics used by tracing software, namely that they assume the "best" path is the highest intensity one, a more pertinent issue when dealing with multicolor microscope images. Here, we report nCorrect, an algorithm for correcting this error by reanalyzing previously created neuron traces to produce more physiologically-relevant ones. Specifically, we use a four dimensional minimization algorithm to identify a more-optimal reconstruction of the image, allowing us to better take advantage of existing manual tracing results. We define a new metric (hyperspectral cosine similarity) for describing the similarity of different neuron colors to each other. Our code is available in an open source license and forms the basis for future improved neuron tracing software.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Post Hoc Analyses
    Srinivas, Titte R.
    Ho, Bing
    Kang, Joseph
    Kaplan, Bruce
    TRANSPLANTATION, 2015, 99 (01) : 17 - 20
  • [42] Post traumatic brain injury and schizophrenia: Post hoc ergo propter hoc?
    Borras, L
    Damsa, C
    Schartz, A
    Andreoli, A
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2004, 7 : S389 - S389
  • [43] Protocol for neuron tracing and analysis of dendritic structures from noisy microscopy images using Neuronalyzer
    Iosilevskii, Yael
    Yuval, Omer
    Shemesh, Tom
    Podbilewicz, Benjamin
    STAR PROTOCOLS, 2024, 5 (02):
  • [44] AUTOMATED NEURON MORPHOLOGY RECONSTRUCTION USING FUZZY-LOGIC DETECTION AND BAYESIAN TRACING ALGORITHMS
    Radojevic, Miroslav
    Smal, Ihor
    Meijering, Erik
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 885 - 888
  • [45] Efficient structural optimization using reanalysis and sensitivity reanalysis
    Kirsch, U.
    Bogomolni, M.
    Sheinman, I.
    ENGINEERING WITH COMPUTERS, 2007, 23 (03) : 229 - 239
  • [46] VECTOR FIELD CONVOLUTION MEDIALNESS APPLIED TO NEURON TRACING
    Mukherjee, Suvadip
    Acton, Scott T.
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 665 - 669
  • [47] Tracing Jammed Area in Wireless Ad-hoc Network using Boundary Node Detection
    Saurabh, Samant
    Rustogi, Rishabh
    2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (ANTS), 2018,
  • [48] Three-dimensional neuron tracing by voxel scooping
    Rodriguez, Alfredo
    Ehlenberger, Douglas B.
    Hof, Patrick R.
    Wearne, Susan L.
    JOURNAL OF NEUROSCIENCE METHODS, 2009, 184 (01) : 169 - 175
  • [49] Revisiting astrocyte to neuron conversion with lineage tracing in vivo
    Wang, Lei-Lei
    Serrano, Carolina
    Zhong, Xiaoling
    Ma, Shuaipeng
    Zou, Yuhua
    Zhang, Chun-Li
    CELL, 2021, 184 (21) : 5465 - +
  • [50] DeepNeuron: an open deep learning toolbox for neuron tracing
    Zhou Z.
    Kuo H.-C.
    Peng H.
    Long F.
    Brain Informatics, 2018, 5 (2)