OPTIMIZED NEURON TRACING USING POST HOC REANALYSIS

被引:0
|
作者
Azzouz, Sara [1 ]
Walker, Logan A. [2 ,3 ]
Doerner, Alexandra [4 ]
Geisel, Kellie L. [5 ]
Rivera, Arianna K. Rodriguez [2 ]
Li, Ye [6 ]
Roossien, Douglas H. [4 ]
Cai, Dawen [2 ,6 ,7 ]
机构
[1] Univ Michigan, EECS, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Biophys, Ann Arbor, MI 48109 USA
[3] Michigan Med, Bioinformat, Ann Arbor, MI USA
[4] Ball State Univ, Dept Biol, Muncie, IN USA
[5] Yale Univ, Biol Program, New Haven, CT USA
[6] Michigan Med, Cell & Dev Biol, Ann Arbor, MI 48109 USA
[7] Univ Michigan, Michigan Neurosci Inst, Ann Arbor, MI 48109 USA
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Neurons; Brainbow; Microscopy;
D O I
10.1109/ISBI53787.2023.10230710
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the last decade, the advances in Brainbow labeling allowed labeling hundreds of neurons with distinct colors in the same field of view of a brain [1, 2]. Reconstruction (or "tracing") of the 3D structures of these images has been enabled by a growing set of software tools for automatic and manual annotation. It is common, however, to have errors introduced by heuristics used by tracing software, namely that they assume the "best" path is the highest intensity one, a more pertinent issue when dealing with multicolor microscope images. Here, we report nCorrect, an algorithm for correcting this error by reanalyzing previously created neuron traces to produce more physiologically-relevant ones. Specifically, we use a four dimensional minimization algorithm to identify a more-optimal reconstruction of the image, allowing us to better take advantage of existing manual tracing results. We define a new metric (hyperspectral cosine similarity) for describing the similarity of different neuron colors to each other. Our code is available in an open source license and forms the basis for future improved neuron tracing software.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Automatic neuron tracing using a locally tunable approach
    Acciai, Ludovica
    Soda, Paolo
    Iannello, Giulio
    2016 IEEE 29TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2016, : 130 - 135
  • [2] An EEG-MEG dissociation between online syntactic comprehension and post hoc reanalysis
    Meltzer, Jed A.
    Braun, Allen R.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2011, 5
  • [3] Neuron Tracing in Perspective
    Meijering, Erik
    CYTOMETRY PART A, 2010, 77A (07) : 693 - 704
  • [4] Automated neuron tracing using probability hypothesis density filtering
    Radojevic, Miroslav
    Meijering, Erik
    BIOINFORMATICS, 2017, 33 (07) : 1073 - 1080
  • [5] Tracing weak neuron fibers
    Liu, Yufeng
    Zhong, Ye
    Zhao, Xuan
    Liu, Lijuan
    Ding, Liya
    Peng, Hanchuan
    BIOINFORMATICS, 2023, 39 (01)
  • [6] Compression optimized tracing of digital curves using graph theory
    Hajdu, Andras
    Pitas, Ioannis
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 3249 - 3252
  • [7] AUTOMATED NEURON TRACING USING THE MARR-HILDRETH ZEROCROSSING TECHNIQUE
    REUMAN, SR
    CAPOWSKI, JJ
    COMPUTERS AND BIOMEDICAL RESEARCH, 1984, 17 (02): : 93 - 115
  • [9] POST HOC OR PROPTER HOC?
    Niles, George M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 1914, 2 (01) : 529 - 529
  • [10] On the Post Hoc Explainability of Optimized Self-Organizing Reservoir Network for Action Recognition
    Lee, Gin Chong
    Loo, Chu Kiong
    SENSORS, 2022, 22 (05)