Optical properties and corrosion resistance of Ti2AlC, Ti3AlC2, and Cr2AlC as candidates for concentrated solar power receivers

被引:10
|
作者
Azina, Clio [1 ]
Badie, Sylvain [2 ]
Litnovsky, Andrey [3 ]
Silvestroni, Laura [4 ]
Sani, Elisa [5 ]
Gonzalez-Julian, Jesus [2 ,6 ]
机构
[1] Rhein Westfal TH Aachen, Mat Chem, D-52074 Aachen, Germany
[2] Forsch Zentrum Julich, Inst Energy & Climate Research Mat Synth & Proc I, D-52425 Julich, Germany
[3] Forsch Zentrum Julich, Inst Energy & Climate Res Plasma Phys IEK 4, D-52425 Julich, Germany
[4] CNR, ISSMC Inst Sci Technol & Sustainabil Ceram, I-48018 Faenza, Italy
[5] CNR INO Natl Inst Opt, I-50125 Florence, Italy
[6] Rhein Westfal TH Aachen, Inst Mineral Engn, Chair Ceram, D-52074 Aachen, Germany
关键词
MAX phases; Concentrated solar power; Corrosion; Optical properties; HIGH-TEMPERATURE OXIDATION; PHASE-BASED CERAMICS; MAX PHASE; HOT CORROSION; ABSORBERS; CARBIDE; HAFNIUM; SUITABILITY; ZIRCONIUM;
D O I
10.1016/j.solmat.2023.112433
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
New generation concentrated solar power (CSP) plants require new solar receiver materials with selective optical properties and excellent corrosion resistance against molten salts. MAX phases are promising materials for CSP applications due to their optical properties and resistance to thermal shocks. Herein, we report a solar absorptance & GE;0.5 and a thermal emittance of 0.17-0.31 between 600 and 1500 K for Cr2AlC, Ti2AlC, and Ti3AlC2. These compositions were also exposed to solar salt corrosion at 600 degrees C for up to 4 weeks. Cr2AlC exhibited superior corrosion resistance due to the formation of a protective nanometric layer.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases
    Solonin, Yu M.
    Savyak, M. P.
    Vasilkivska, M. A.
    Ivchenko, V. I.
    POWDER METALLURGY AND METAL CERAMICS, 2021, 60 (5-6) : 259 - 267
  • [32] High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases
    Yu.M. Solonin
    M.P. Savyak
    M.A. Vasilkivska
    V.I. Ivchenko
    Powder Metallurgy and Metal Ceramics, 2021, 60 : 259 - 267
  • [33] The thermal stability of Ti2AlC and Ag/Ti2AlC in Ar and air
    Huang, Runzhang
    Xu, Guofu
    Zhao, Chengwei
    Wu, Qiong
    Yu, Lejian
    Wu, Chunping
    MATERIALS CHARACTERIZATION, 2024, 213
  • [34] 燃烧温度对燃烧合成Ti3AlC2和Ti2AlC的影响
    郭俊明
    陈克新
    刘光华
    周和平
    宁晓山
    功能材料, 2004, (06) : 763 - 765+768
  • [35] Synthesis of Ti2AlC/Ti3AlC2 with Si doping by spark plasma sintering and theoretical analysis
    Wang, Ping
    Mei, Bing-Chu
    Min, Xin-Min
    Hong, Xiao-Lin
    Zhou, Wei-Bing
    Yan, Ming
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2007, 17 (04): : 511 - 517
  • [36] Synthesis of Ti2AlC and Ti3AlC2 by mechano-chemical reaction and hot pressing process
    Liu, Jianke
    Yang, Ruoxin
    Zhu, Jianfeng
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 2509 - 2513
  • [37] Preparation of Ti3AlC2 and Ti2AlC by self-propagating high-temperature synthesis
    Zhou, AG
    Wang, CA
    Ge, ZB
    Wu, LF
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (21) : 1971 - 1973
  • [38] Anisotropic arc erosion resistance of Ag/Ti3AlC2 composites induced by the alignment of Ti3AlC2
    Wang, Dan Dan
    Tian, Wu Bian
    Ding, Jian Xiang
    Ma, Ai Bin
    Zhu, Yong Fa
    Zhang, Pei Gen
    He, Wei
    Sun, Zheng Ming
    CORROSION SCIENCE, 2020, 171
  • [39] Strain effect on the defect formation and diffusion in Ti2AlC and Ti3AlC2: A first-principles study
    Wang, Changying
    Ren, Cuilan
    Guo, Yongliang
    Wan, Zhilong
    Qin, Sai
    He, Xin
    Huang, Wenjuan
    Yin, Yaru
    Huai, Ping
    COMPUTATIONAL MATERIALS SCIENCE, 2023, 218
  • [40] 自蔓延高温合成Ti3AlC2和Ti2AlC及其反应机理研究
    李小雷
    周爱国
    汪长安
    马小娥
    刘豫
    硅酸盐学报, 2002, (03) : 407 - 410