Arithmetic Progressions Among Powerful Numbers

被引:0
|
作者
Chan, Tsz Ho [1 ]
机构
[1] Kennesaw State Univ, Math Dept, Marietta, GA 30060 USA
关键词
powerful number; k-full number; arithmetic progression; abc-conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study k-term arithmetic progressions N, N + d, ... , N + (k - 1)d of powerful numbers. Unconditionally, we exhibit infinitely many 3-term arithmetic progressions of powerful numbers with d & LE; 5N1/2. Assuming the abc-conjecture, we obtain a nearly tight lower bound on the common difference. We also prove some partial results when k > 4 and pose some open questions.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [21] Infinitely many Carmichael numbers in arithmetic progressions
    Wright, Thomas
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 943 - 952
  • [22] PRIME NUMBERS IN ARITHMETIC PROGRESSIONS WITH DIFFERENCE 24
    BATEMAN, PT
    LOW, ME
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (02): : 139 - &
  • [23] Arithmetic Progressions, Prime Numbers, and Squarefree Integers
    Stuart Clary
    Jacek Fabrykowski
    Czechoslovak Mathematical Journal, 2004, 54 : 915 - 927
  • [24] SUB-RAMSEY NUMBERS FOR ARITHMETIC PROGRESSIONS
    ALON, N
    CARO, Y
    TUZA, Z
    GRAPHS AND COMBINATORICS, 1989, 5 (04) : 307 - 314
  • [25] Arithmetic progressions, prime numbers, and squarefree integers
    Clary, S
    Fabrykowski, J
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (04) : 915 - 927
  • [26] ARITHMETIC PROGRESSIONS OF b-NIVEN NUMBERS
    Grundman, Helen G.
    Harrington, Joshua
    Wong, Tony W. H.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 723 - 733
  • [27] ARITHMETIC PROGRESSIONS IN FINITE SETS OF REAL NUMBERS
    KLOTZ, W
    GLASGOW MATHEMATICAL JOURNAL, 1973, 14 (SEP) : 101 - 104
  • [28] Formulas for moments of class numbers in arithmetic progressions
    Bringmann, Kathrin
    Kane, Ben
    Pujahari, Sudhir
    ACTA ARITHMETICA, 2023, 207 (01) : 19 - 38
  • [29] Exceptional characters and prime numbers in arithmetic progressions
    Friedlander, JB
    Iwaniec, H
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2003, 2003 (37) : 2033 - 2050
  • [30] Arithmetic Progressions of b-Prodigious Numbers
    Gohn, Michael
    Lebiere, Sophia
    Shappell, Kyla
    Harrington, Joshua
    Samamah, Hani
    Wong, Tony W. H.
    JOURNAL OF INTEGER SEQUENCES, 2022, 25 (08)