Quantum Optimal Control: Practical Aspects and Diverse Methods

被引:4
|
作者
Mahesh, T. S. [1 ,2 ]
Batra, Priya [1 ,2 ]
Ram, M. Harshanth [1 ,2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Pune 411008, Maharashtra, India
[2] Indian Inst Sci Educ & Res, NMR Res Ctr, Pune 411008, Maharashtra, India
关键词
Quantum optimal control; Quantum gate; State preparation; Quantum dynamics; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; ROBUST-CONTROL; SYSTEMS; DYNAMICS; PHASE; DESIGN; PULSES; QUTIP; GATE;
D O I
10.1007/s41745-022-00311-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum controls realize the unitary or nonunitary operations employed in quantum computers, quantum simulators, quantum communications, and other quantum information devices. They implement the desired quantum dynamics with the help of electric, magnetic, or electromagnetic control fields. Quantum optimal control (QOC) deals with designing an optimal control field modulation that most precisely implements a desired quantum operation with minimum energy consumption and maximum robustness against hardware imperfections as well as external noise. Over the last 2 decades, numerous QOC methods have been proposed. They include asymptotic methods, direct search, gradient methods, variational methods, machine learning methods, etc. In this review, we shall introduce the basic ideas of QOC, discuss practical challenges, and then take an overview of the diverse QOC methods.
引用
收藏
页码:591 / 607
页数:17
相关论文
共 50 条
  • [41] IMPORTANCE OF OPTIMAL CONTROL FOR PRACTICAL ENGINEER
    FLUGGELOTZ, I
    AUTOMATICA, 1970, 6 (06) : 749 - +
  • [42] PRACTICAL OPTIMAL CONTROL WITHOUT COMPUTERS
    LEES, LH
    ROOTS, WK
    IEEE TRANSACTIONS ON INDUSTRY AND GENERAL APPLICATIONS, 1971, IGA7 (01): : 38 - &
  • [43] Practical aspects of security certification for commercial quantum technologies
    Walenta, Nino
    Soucarros, Mathilde
    Stucki, Damien
    Caselunghe, Dario
    Domergue, Mathias
    Hagerman, Michael
    Hart, Randall
    Hayford, Don
    Houlmann, Raphael
    Legre, Matthieu
    McCandlish, Todd
    Page, Jean-Benoit
    Tourville, Maurice
    Wolterman, Richard
    ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS XII; AND QUANTUM INFORMATION SCIENCE AND TECHNOLOGY, 2015, 9648
  • [44] Synthesized Control for Practical Solution of the Optimal Control Problem
    Diveev, Askhat
    PROCEEDINGS OF THE FUTURE TECHNOLOGIES CONFERENCE (FTC) 2021, VOL 2, 2022, 359 : 496 - 512
  • [45] Quantum Pareto optimal control
    Chakrabarti, Raj
    Wu, Rebing
    Rabitz, Herschel
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [46] Optimal control for quantum detectors
    Paraj Titum
    Kevin Schultz
    Alireza Seif
    Gregory Quiroz
    B. D. Clader
    npj Quantum Information, 7
  • [47] Optimal control of a quantum measurement
    Egger, D. J.
    Wilhelm, F. K.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [48] Optimal Quantum Control Theory
    James, M. R.
    ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 4, 2021, 2021, 4 : 343 - 367
  • [49] A quantum approach for optimal control
    Sandesara, Hirmay
    Shukla, Alok
    Vedula, Prakash
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [50] Optimal control of quantum revival
    Rasanen, Esa
    Heller, Eric J.
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (01):