Quantum Optimal Control: Practical Aspects and Diverse Methods

被引:4
|
作者
Mahesh, T. S. [1 ,2 ]
Batra, Priya [1 ,2 ]
Ram, M. Harshanth [1 ,2 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Phys, Pune 411008, Maharashtra, India
[2] Indian Inst Sci Educ & Res, NMR Res Ctr, Pune 411008, Maharashtra, India
关键词
Quantum optimal control; Quantum gate; State preparation; Quantum dynamics; !text type='PYTHON']PYTHON[!/text] FRAMEWORK; ROBUST-CONTROL; SYSTEMS; DYNAMICS; PHASE; DESIGN; PULSES; QUTIP; GATE;
D O I
10.1007/s41745-022-00311-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum controls realize the unitary or nonunitary operations employed in quantum computers, quantum simulators, quantum communications, and other quantum information devices. They implement the desired quantum dynamics with the help of electric, magnetic, or electromagnetic control fields. Quantum optimal control (QOC) deals with designing an optimal control field modulation that most precisely implements a desired quantum operation with minimum energy consumption and maximum robustness against hardware imperfections as well as external noise. Over the last 2 decades, numerous QOC methods have been proposed. They include asymptotic methods, direct search, gradient methods, variational methods, machine learning methods, etc. In this review, we shall introduce the basic ideas of QOC, discuss practical challenges, and then take an overview of the diverse QOC methods.
引用
收藏
页码:591 / 607
页数:17
相关论文
共 50 条
  • [1] Quantum Optimal Control: Practical Aspects and Diverse Methods
    T. S. Mahesh
    Priya Batra
    M. Harshanth Ram
    Journal of the Indian Institute of Science, 2023, 103 : 591 - 607
  • [2] Optimal control methods for quantum batteries
    Mazzoncini, Francesco
    Cavina, Vasco
    Andolina, Gian Marcello
    Erdman, Paolo Andrea
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [3] Practical Methods for Optimal Control Using Nonlinear Programming
    Rao, Anil V. T.
    Betts, John V.
    IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (04): : 94 - 95
  • [4] Introduction to theoretical and experimental aspects of quantum optimal control
    Ansel, Q.
    Dionis, E.
    Arrouas, F.
    Peaudecerf, B.
    Guerin, S.
    Guery-Odelin, D.
    Sugny, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (13)
  • [5] LIVING IN THE REAL WORLD - SOME PRACTICAL ASPECTS OF QUANTUM CONTROL
    YAN, YJ
    WHITNELL, RM
    WILSON, KR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 204 : 57 - PHYS
  • [6] Practical aspects of Quantum Cryptography
    Zbinden, H
    Ribordy, G
    Gisin, N
    MULITMEDIA NETWORKS: SECURITY, DISPLAYS, TERMINALS, AND GATEWAYS, 1998, 3228 : 332 - 339
  • [7] Practical aspects of quantum cryptography
    Dusek, M
    Haderka, O
    Hendrych, M
    QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT 2, 2000, : 393 - 398
  • [8] Optimal control methods for quantum gate preparation: a comparative study
    Riaz, Bilal
    Shuang, Cong
    Qamar, Shahid
    QUANTUM INFORMATION PROCESSING, 2019, 18 (04)
  • [9] A tutorial on optimal control and reinforcement learning methods for quantum technologies
    Giannelli, Luigi
    Sgroi, Sofia
    Brown, Jonathon
    Paraoanu, Gheorghe Sorin
    Paternostro, Mauro
    Paladino, Elisabetta
    Falci, Giuseppe
    PHYSICS LETTERS A, 2022, 434
  • [10] NEWTON METHODS FOR THE OPTIMAL CONTROL OF CLOSED QUANTUM SPIN SYSTEMS
    Ciaramella, G.
    Borzi, A.
    Dirr, G.
    Wachsmuth, D.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A319 - A346