Bioinspired nanovesicles released from injectable hydrogels facilitate diabetic wound healing by regulating macrophage polarization and endothelial cell dysfunction

被引:14
|
作者
Zhang, Weiyue [1 ,2 ]
Yang, Xueyang [1 ,2 ]
Huang, Xin [3 ]
Chen, Lulu [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Endocrinol, Wuhan 430022, Peoples R China
[2] Hubei Prov Clin Res Ctr Diabet & Metab Disorders, Wuhan 430022, Peoples R China
[3] Huazhong Univ Sci & Technol, Union Hosp, Tongji Med Coll, Dept Orthopaed, Wuhan 430022, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Bioinspired nanovesicles; 4-octyl itaconate; Macrophage polarization; Neovascularization; Diabetic wound healing; BIOMIMETIC NANOPARTICLES; THERAPY;
D O I
10.1186/s12951-023-02119-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Wound healing is one of the major global health concerns in diabetic patients. Overactivation of proinflammatory M1 macrophages could lead to delayed wound healing in diabetes. 4-octyl itaconate (4OI), a derivative of the metabolite itaconate, has aroused growing interest recently on account of its excellent anti-inflammatory properties. Cell membrane coating is widely regarded as a novel biomimetic strategy to deliver drugs and inherit properties derived from source cells for biomedical applications. Herein, we fused induced pluripotent stem cell-derived endothelial cell (iEC) membrane together with M1 type macrophage membrane to construct a hybrid membrane (iEC-M) camouflaged 4OI nanovesicles (4OI@iEC-M). Furthermore, bioinspired nanovesicles 4OI@iEC-M are incorporated into the injectable, multifunctional gelatin methacryloyl hydrogels for diabetic wound repair and regeneration. In our study, bioinspired nanovesicles could achieve dual-targeted deliver of 4OI into both M1 macrophages and endothelial cells, thereby promoting macrophage polarization and protecting endothelial cells. With the synergistically anti-inflammatory and immunoregulative effects, the bioinspired nanovesicles-loaded hydrogels could facilitate neovascularization and exhibit superior diabetic wound repair and regeneration. Taken together, this study might provide a novel strategy to facilitate diabetic wound healing, thereby reducing limb amputation and mortality of diabetes.
引用
收藏
页数:14
相关论文
共 41 条
  • [41] Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes
    Yang, Hao
    Xu, Hailin
    Wang, Zhiyong
    Li, Xiaohui
    Wang, Peng
    Cao, Xiaoling
    Xu, Zhongye
    Lv, Dongming
    Rong, Yanchao
    Chen, Miao
    Tang, Bing
    Hu, Zhicheng
    Deng, Wuguo
    Zhu, Jiayuan
    DIABETES RESEARCH AND CLINICAL PRACTICE, 2023, 197