pH-responsive materials based on sodium carboxymethyl cellulose as a safe and effective strategy for camptothecin delivery

被引:4
|
作者
Su, Chengdong [1 ]
Liu, Guojie [1 ]
Wang, Min [1 ]
Gao, He [1 ]
Zou, Yulong [1 ]
Gao, Jun [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, 24 South Sect First Ring Rd, Chengdu 610065, Sichuan, Peoples R China
关键词
Spiropyran; Carboxymethyl cellulose; Camptothecin; ZIF-8; Drug delivery; DRUG-DELIVERY; POLYMERIC MICELLES; SPIROPYRAN; NANOPLATFORM;
D O I
10.1016/j.colsurfa.2023.132072
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The safe and efficient delivery of drugs is regarded as a fundamental strategy for enhancing the low effectiveness of cancer treatments. Herein, a simple preparation approach for a multifunctional drug delivery system was reported. The novel structure of spiropyran (SP), 1-(6 & PRIME;-bromo-hexyl)- 3,3-dimethyl indoline-6 & PRIME;-methoxy benzopyran, was used to modify sodium carboxymethyl cellulose (NaCMC) for controlling drug release. SP has a heightened sensitivity to variations in pH, with a linear response range of .2-5.5. The elevated drug loading (31.68 %) can be attributed to the hydrophobic interaction of SP and the adsorption of NaCMC. Porous materials composed of zinc ions and dimethylimidazole (ZIF-8) as an embedded shell, which serves as a barrier that effectively reduces drug leakage from 20 % to 12 %, thus mitigating the side effects of camptothecin (CPT) in alkaline conditions. In acidic conditions, the collapse of ZIF-8 provides zinc ions that act as crosslinking agents for NaCMC, thereby improving the channel of drug release and enhancing the release amount from 51.9 % to 66.7 % compared with SP-grafted NaCMC micelles. The inherent biological adhesion of NaCMC ensures sustained drug release for a period of up to 40 h. These pH-responsive carriers hold great promise in the safe and effective treatment of cancer in the gastrointestinal tract, with CPT emerging as a highly promising candidate.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Preparation of cellulose-based nanoparticles via electrostatic self-assembly for the pH-responsive delivery of astaxanthin
    Gan, Miaoyu
    Cao, Ailing
    Cai, Luyun
    Xiang, Xia
    Li, Jian
    Luan, Qian
    FOOD CHEMISTRY, 2025, 463
  • [42] Stable and Biocompatible Cellulose-Based CaCO3 Microspheres for Tunable pH-Responsive Drug Delivery
    Yan, Guihua
    Feng, Yunchao
    Gao, Zhebang
    Zeng, Xianhai
    Hong, Wenjing
    Liu, Wenjie
    Sun, Yong
    Tang, Xing
    Lei, Tingzhou
    Lin, Lu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (24): : 19824 - 19831
  • [43] Carboxymethyl cellulose-functionalised magnetic nanocarriers for pH responsive delivery of Curcumin in cancer therapy
    Kanagarajan, Shenbaga Vidhya
    Thiyagarajan, Devasena
    MATERIALS RESEARCH EXPRESS, 2019, 6 (01)
  • [44] Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond
    Jing, Huijuan
    Huang, Xin
    Du, Xiaojing
    Mo, Ling
    Ma, Chaoyang
    Wang, Hongxin
    CARBOHYDRATE POLYMERS, 2022, 278
  • [45] A pH-responsive carboxymethyl dextran-based conjugate as a carrier of docetaxel for cancer therapy
    Han, Hwa Seung
    Lee, Minchang
    An, Jae Yoon
    Son, Soyoung
    Ko, Hyewon
    Lee, Hansang
    Chae, Yee Soo
    Kang, Young Mo
    Park, Jae Hyung
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2016, 104 (04) : 789 - 796
  • [46] Pickering emulsion hydrogel based on alginate-gellan gum with carboxymethyl chitosan as a pH-responsive controlled release delivery system
    Zheng, Wenxiu
    Zhang, Huizhe
    Wang, Ju
    Wang, Jinjin
    Yan, Ling
    Liu, Changhong
    Zheng, Lei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 216 : 850 - 859
  • [47] Green Synthesis of pH-Responsive Metal-Organic Frameworks for Delivery of Diclofenac Sodium
    Nabipour, Hafezeh
    Rohani, Sohrab
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2024, 23 (01) : 63 - 70
  • [48] A pH-Responsive Dual-drug Delivery System Based on Chitosan
    Han, Xue
    Cao, Jiang-yong-quan
    Zhou, Jiang-ling
    Chen, Cheng
    Song, Fei
    Wang, Yu-zhong
    ACTA POLYMERICA SINICA, 2015, (12) : 1471 - 1476
  • [49] pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery
    Cheng, Lianghao
    Deng, Bin
    Luo, Weihua
    Nie, Shaofei
    Liu, Xinyi
    Yin, Yanan
    Liu, Shibo
    Wu, Zhiping
    Zhan, Peng
    Zhang, Lin
    Chen, Jienan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (18) : 5249 - 5258
  • [50] pH-Responsive Lignin-Based Nanomicelles for Oral Drug Delivery
    Cheng, Lianghao
    Deng, Bin
    Luo, Weihua
    Nie, Shaofei
    Liu, Xinyi
    Yin, Yanan
    Liu, Shibo
    Wu, Zhiping
    Zhan, Peng
    Zhang, Lin
    Chen, Jienan
    Journal of Agricultural and Food Chemistry, 2020, 68 (18): : 5249 - 5258