Next generation pan-cancer blood proteome profiling using proximity extension assay

被引:19
|
作者
Alvez, Maria Bueno [1 ]
Edfors, Fredrik [1 ]
von Feilitzen, Kalle [1 ]
Zwahlen, Martin [1 ]
Mardinoglu, Adil [1 ,2 ]
Edqvist, Per-Henrik [3 ]
Sjoblom, Tobias [3 ]
Lundin, Emma [3 ]
Rameika, Natallia [3 ]
Enblad, Gunilla [3 ]
Lindman, Henrik [3 ]
Hoglund, Martin [4 ]
Hesselager, Goran [4 ]
Stalberg, Karin [5 ]
Enblad, Malin [6 ]
Simonson, Oscar E. [6 ]
Haggman, Michael [6 ]
Axelsson, Tomas [4 ]
Aberg, Mikael [7 ]
Nordlund, Jessica [4 ]
Zhong, Wen [8 ]
Karlsson, Max [1 ]
Gyllensten, Ulf [3 ]
Ponten, Fredrik [3 ]
Fagerberg, Linn [1 ]
Uhlen, Mathias [1 ,9 ]
机构
[1] KTH Royal Inst Technol, Dept Prot Sci, Sci Life Lab, Stockholm, Sweden
[2] Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England
[3] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden
[4] Uppsala Univ, Dept Med Sci, Uppsala, Sweden
[5] Uppsala Univ, Dept Womens & Childrens Hlth, Uppsala, Sweden
[6] Uppsala Univ, Dept Surg Sci, Uppsala, Sweden
[7] Uppsala Univ, Dept Med Sci, Clin Chem & SciLifeLab Affin Prote, Uppsala, Sweden
[8] Linkoping Univ, Dept Biomed & Clin Sci BKV, Sci Life Lab, Linkoping, Sweden
[9] Karolinska Inst, Dept Neurosci, Stockholm, Sweden
基金
瑞典研究理事会;
关键词
MODELS;
D O I
10.1038/s41467-023-39765-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Comprehensive and scalable proteomic profiling of plasma samples can improve the screening and diagnosis of cancer patients. Here, the authors use the Olink Proximity Extension Assay technology to characterise the plasma proteomes of 1477 patients across twelve cancer types, and use machine learning to obtain a protein panel for cancer classification. A comprehensive characterization of blood proteome profiles in cancer patients can contribute to a better understanding of the disease etiology, resulting in earlier diagnosis, risk stratification and better monitoring of the different cancer subtypes. Here, we describe the use of next generation protein profiling to explore the proteome signature in blood across patients representing many of the major cancer types. Plasma profiles of 1463 proteins from more than 1400 cancer patients are measured in minute amounts of blood collected at the time of diagnosis and before treatment. An open access Disease Blood Atlas resource allows the exploration of the individual protein profiles in blood collected from the individual cancer patients. We also present studies in which classification models based on machine learning have been used for the identification of a set of proteins associated with each of the analyzed cancers. The implication for cancer precision medicine of next generation plasma profiling is discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Differential Integration of Transcriptome and Proteome Identifies Pan-Cancer Prognostic Biomarkers
    Schwartz, Gregory W.
    Petrovic, Jelena
    Zhou, Yeqiao
    Faryabi, Robert B.
    FRONTIERS IN GENETICS, 2018, 9
  • [22] Towards routine proteome profiling of FFPE tissue: insights from a 1,220-case pan-cancer study
    Tueshaus, Johanna
    Eckert, Stephan
    Schliemann, Marius
    Zhou, Yuxiang
    Pfeiffer, Pauline
    Halves, Christiane
    Fusco, Federico
    Weigel, Johannes
    Hoenikl, Lisa
    Butenschoen, Vicki
    Todorova, Rumyana
    Rauert-Wunderlich, Hilka
    The, Matthew
    Rosenwald, Andreas
    Heinemann, Volker
    Holch, Julian
    Steiger, Katja
    Delbridge, Claire
    Meyer, Bernhard
    Weichert, Wilko
    Mogler, Carolin
    Kuhn, Peer-Hendrik
    Kuster, Bernhard
    EMBO JOURNAL, 2025, 44 (01): : 304 - 329
  • [23] Next generation plasma proteome profiling to monitor health and disease
    Wen Zhong
    Fredrik Edfors
    Anders Gummesson
    Göran Bergström
    Linn Fagerberg
    Mathias Uhlén
    Nature Communications, 12
  • [24] Next generation plasma proteome profiling to monitor health and disease
    Zhong, Wen
    Edfors, Fredrik
    Gummesson, Anders
    Bergstroem, Goeran
    Fagerberg, Linn
    Uhlen, Mathias
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Clinical Pan-Cancer Assessment of Mismatch Repair Deficiency Using Tumor-Only, Targeted Next-Generation Sequencing
    Albayrak, Adem
    Garrido-Castro, Ana C.
    Giannakis, Marios
    Umeton, Renato
    Manam, Monica Devi
    Stover, Elizabeth H.
    Porter, Rebecca L.
    Johnson, Bruce E.
    Liaw, Kai-Li
    Amonkar, Mayur
    Church, Alanna J.
    Janeway, Katherine A.
    Nowak, Jonathan A.
    Sholl, Lynette
    Lin, Nancy U.
    Johnson, Jason M.
    JCO PRECISION ONCOLOGY, 2020, 4 : 1084 - 1097
  • [26] NTRK Gene Fusion Detection in a Pan-Cancer Setting Using the Idylla GeneFusion Assay
    Sorber, Laure
    Van Dorst, Bieke
    Bellon, Ellen
    Zwaenepoel, Karen
    Lambin, Suzan
    De Winne, Koen
    Lardon, Filip
    Pauwels, Patrick
    Siozopoulou, Vasiliki
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2022, 24 (07): : 750 - 759
  • [27] Identification of Potential Genomic Alterations Using Pan-Cancer Cell-Free DNA Next-Generation Sequencing in Patients With Gastric Cancer
    Kim, Boyeon
    Kim, Yoonjung
    Cho, Jae Yong
    Lee, Kyung-A
    ANNALS OF LABORATORY MEDICINE, 2024, 44 (02) : 164 - 173
  • [28] Exploration of the TMB and hypermutation landscape in Chinese pan-cancer patient by next-generation sequencing.
    Wang, Shuo
    Xu, Jiasheng
    Sun, Jian
    Wei, Deng
    Zhang, Xinsheng
    Wang, Danhua
    Ma, Tonghui
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [29] Analytic validation of a pan-cancer tumor mutational burden assay
    Nesselbush, Monica
    Jones, Sian
    Keefer, Laurel
    Sengamalay, Naomi
    Velculescu, Victor
    Diaz, Luis
    Sausen, Mark
    Angiuoli, Samuel
    MOLECULAR CANCER THERAPEUTICS, 2018, 17 (01)
  • [30] Use of an Integrated Pan-Cancer Oncology Enrichment Next-Generation Sequencing Assay to Measure Tumour Mutational Burden and Detect Clinically Actionable Variants
    Valerie Pestinger
    Matthew Smith
    Toju Sillo
    John M. Findlay
    Jean-Francois Laes
    Gerald Martin
    Gary Middleton
    Phillipe Taniere
    Andrew D. Beggs
    Molecular Diagnosis & Therapy, 2020, 24 : 339 - 349