Reinforcement learning with dynamic convex risk measures

被引:6
|
作者
Coache, Anthony [1 ]
Jaimungal, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
[2] Univ Oxford, Oxford Man Inst, Oxford, England
基金
加拿大自然科学与工程研究理事会;
关键词
actor-critic algorithm; dynamic risk measures; financial hedging; policy gradient; reinforcement learning; robot control; time-consistency; trading strategies; APPROXIMATE; NETWORKS;
D O I
10.1111/mafi.12388
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We develop an approach for solving time-consistent risk-sensitive stochastic optimization problems using model-free reinforcement learning (RL). Specifically, we assume agents assess the risk of a sequence of random variables using dynamic convex risk measures. We employ a time-consistent dynamic programming principle to determine the value of a particular policy, and develop policy gradient update rules that aid in obtaining optimal policies. We further develop an actor-critic style algorithm using neural networks to optimize over policies. Finally, we demonstrate the performance and flexibility of our approach by applying it to three optimization problems: statistical arbitrage trading strategies, financial hedging, and obstacle avoidance robot control.
引用
收藏
页码:557 / 587
页数:31
相关论文
共 50 条