Generalized barycenters and variance maximization on metric spaces

被引:0
|
作者
Pass, Brendan [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, 632 CAB, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
49K35; 58C30; 49Q22; 53C21; CONVEX-FUNCTIONS; CAT(1)-SPACES; THEOREM;
D O I
10.1007/s11784-022-01015-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the variance of a probability measure mu on a compact subset X of a complete metric space M is bounded by the square of the circumradius R of the canonical embedding of X into the space P(M) of probability measures on M, equipped with the Wasserstein metric. When barycenters of measures on X are unique (such as on CAT(0) spaces), our approach shows that R in fact coincides with the circumradius of X and so this result extends a recent result of Lim McCann from Euclidean space. Our approach involves bi-linear minimax theory on P(X) x P(M) and extends easily to the case when the variance is replaced by very general moments. As an application, we provide a simple proof of Jung's theorem on CAT(k) spaces, a result originally due to Dekster and Lang-Schroeder.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Generalized barycenters and variance maximization on metric spaces
    Brendan Pass
    [J]. Journal of Fixed Point Theory and Applications, 2023, 25
  • [2] Concentration of empirical barycenters in metric spaces
    Brunel, Victor-Emmanuel
    Serres, Jordan
    [J]. INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 237, 2024, 237
  • [3] GENERALIZED METRIC SPACES AND DEVELOPABLE SPACES
    Tanaka, Yoshio
    [J]. TOPOLOGY PROCEEDINGS, VOL 34, 2009, 34 : 97 - 114
  • [4] Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics
    A. Ahidar-Coutrix
    T. Le Gouic
    Q. Paris
    [J]. Probability Theory and Related Fields, 2020, 177 : 323 - 368
  • [5] Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics
    Ahidar-Coutrix, A.
    Le Gouic, T.
    Paris, Q.
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 323 - 368
  • [6] ON GENERALIZED METRIC SPACES: A SURVEY
    Kadelburg, Zoran
    Radenovic, Stojan
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (01): : 3 - 13
  • [7] ON GENERALIZED COMPLETE METRIC SPACES
    STEIN, JD
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 75 (02) : 439 - &
  • [8] GENERALIZED METRIC SPACES: SURVEY
    Dosenovic, Tatjana
    Radenovic, Stojan
    Sedghi, Shaban
    [J]. TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 9 (01): : 3 - 17
  • [9] On resolutions of generalized metric spaces
    Mizokami, T
    Suwada, F
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2005, 146 : 539 - 545
  • [10] A duality of generalized metric spaces
    Antoniuk, Sylwia
    Waszkiewicz, Pawel
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (17) : 2371 - 2381