Study on early dynamic compressive strength of alkali-activated slag high performance concrete

被引:0
|
作者
Ma, Qinyong [1 ]
Yang, Xuan [1 ]
Shi, Yuhang [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Civil Engn & Architecture, Huainan, Peoples R China
关键词
Alkali-activated slag high performance concrete; split hopkinson pressure bar test system; dynamic compressive strength; stress-strain curve; impact ductility; energy dissipation; MECHANICAL PROPERTIES; FLY-ASH;
D O I
10.1080/19648189.2023.2295515
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The effects of different flyash content, steel fibre content and water-binder ratio on the dynamic compressive strength of alkali-activated slag high performance concrete (ASHPC) were studied. When flyash and water-binder ratio rose, the dynamic compressive strength of ASHPC fell by 27.3% and 23.5%, respectively, and increased by 81.6% when steel fibre content increased. The dynamic elastic modulus rises by 35.0% with an increase in steel fibre content and falls by 48.0% and 65.6%, respectively, with an increase in flyash content and water-binder ratio. The toughness conversion ratio and pre-peak toughness ratio dropped by 34.1% and 9.5%, respectively, whereas the post-peak toughness ratio rose by 36.4% with an increase in flyash content. The test block's pre-peak toughness ratio and toughness conversion ratio increased by 12.7% and 60.0%, respectively, with an increase in steel fibre , whereas the post-peak toughness ratio declined by 31.0%. With the increase of water-binder ratio, the pre-peak toughness ratio and toughness conversion rate of the test block increased by 31.0 % and 132 %, respectively, and the post-peak toughness ratio decreased by 42.8 %. The energy absorption and reflection rise while the energy transmission falls as flyash concentration and the water-binder ratio rise. The transmission energy rises as the amount of steel fibre grows, while the energy absorption and reflection fall.
引用
收藏
页码:2160 / 2176
页数:17
相关论文
共 50 条
  • [31] Compressive Strength, Hydration and Pore Structure of Alkali-Activated Slag Mortars Integrating with Recycled Concrete Powder as Binders
    Hao Wang
    Liang Wang
    Wenfeng Shen
    Ke Cao
    Lei Sun
    Pengju Wang
    Liyun Cui
    KSCE Journal of Civil Engineering, 2022, 26 : 795 - 805
  • [32] A study on early hydration of alkali-activated slag cement
    He, Juan
    Cai, Jun
    He, Junhong
    CEMENT WAPNO BETON, 2017, 22 (06): : 507 - +
  • [33] Experimental Study of Carbonation Resistance of Alkali-Activated Slag Concrete
    Bai, Ying-Hua
    Yu, Sheng
    Chen, Wei
    ACI MATERIALS JOURNAL, 2019, 116 (03) : 95 - 104
  • [34] Study on improvement of carbonation resistance of alkali-activated slag concrete
    He, Juan
    Gao, Qie
    Wu, Yonghua
    He, Junhong
    Pu, Xiaolin
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 176 : 60 - 67
  • [35] Development of fly ash and slag based high-strength alkali-activated foam concrete
    Hao, Yifei
    Yang, Guangzhao
    Liang, Kaikang
    CEMENT & CONCRETE COMPOSITES, 2022, 128
  • [36] Resistance to Chlorides of the Alkali-Activated Slag Concrete
    Roa-Rodriguez, G.
    Aperador, W.
    Delgado, A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2014, 9 (01): : 282 - 291
  • [37] Alternative concrete based on alkali-activated slag
    Rodriguez, E.
    Bernal, S.
    Mejia de Gutierrez, R.
    Puertas, F.
    MATERIALES DE CONSTRUCCION, 2008, 58 (291) : 53 - 67
  • [38] Mechanical Properties of Alkali-activated Slag Concrete
    Wan X.
    Zhang Y.
    Zhao T.
    Zhang S.
    Cheng Y.
    2018, Cailiao Daobaoshe/ Materials Review (32): : 2091 - 2095
  • [39] Sulfate attack on alkali-activated slag concrete
    Bakharev, T
    Sanjayan, JG
    Cheng, YB
    CEMENT AND CONCRETE RESEARCH, 2002, 32 (02) : 211 - 216
  • [40] Experimental Study of the Dynamic Compressive and Tensile Strengths of Fly Ash and Slag Based Alkali-Activated Concrete Reinforced With Basalt Fibers
    Lian, Chong
    Wang, Yubo
    Liu, Shan
    Hao, Yifei
    Frontiers in Materials, 2021, 8