DIAGNOSIS OF CLINICAL SIGNIFICANT PROSTATE CANCER ON BIPARAMETRIC MRI USING ZONE-SPECIFIC RADIOMIC FEATURES

被引:0
|
作者
Mylona, Eugenia [1 ]
Zaridis, Dimitrios [1 ]
Tachos, Nikolaos [1 ]
Tsiknakis, Manolis [2 ]
Marias, Kostas [2 ]
Fotiadis, Dimitrios I. [1 ,3 ]
机构
[1] FORTH BRI, Dept Biomed Res, Ioannina, Greece
[2] FORTH ICS, Computat Biomed Lab, Iraklion, Greece
[3] Univ Ioannina, Unit Med Technol & Intelligent Informat Syst, Ioannina, Greece
关键词
radiomics; machine learning; prostate cancer characterization; medical imaging; classification; BIOPSY; PATHOLOGY;
D O I
10.1109/ISBI53787.2023.10230613
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantitative assessment of MRI, by means of radiomic analyses, is an emerging approach for prostate cancer (PCa) detection and characterization. Typically, radiomic features are extracted from the lesions, despite inherent uncertainties surrounding PCa segmentation. The aim of the study was to assess the usefulness of mpMRI-based radiomic models, originating from distinct anatomical regions of the prostate for non-invasive characterization of clinically significant PCa and compare them with lesion-derived radiomic models. Different classification tasks were formulated for each anatomical region (whole gland, peripheral zone, transition zone) and the corresponding lesions. For each task, four sets of radiomic features were considered (T2w, DWI, ADC, and their combination), and four classification algorithms (LASSO, RF, SVM, XGB) were implemented. Nested cross-validation was applied for model development, feature selection, hyperparameter optimization, and performance assessment. Whole-region RF radiomic models, with a maximum AUC of 0.84, outperformed the corresponding tumor-specific radiomic models (maximum AUC=0.75).
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Clinical Application of Biparametric MRI Texture Analysis for Detection and Evaluation of High-Grade Prostate Cancer in Zone-Specific Regions
    Niu, Xiang-ke
    Chen, Zhi-fan
    Chen, Lin
    Li, Jun
    Peng, Tao
    Li, Xin
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 210 (03) : 549 - 556
  • [2] Prediction of Clinically Significant Prostate Cancer Using Multiparametric MRI, Biparametric MRI, and Clinical Parameters
    Oberneder, Maximilian
    Henzler, Thomas
    Kriegmair, Martin
    Vag, Tibor
    Roethke, Matthias
    Siegert, Sabine
    Lang, Roland
    Lenk, Julia
    Gawlitza, Joshua
    UROLOGIA INTERNATIONALIS, 2024,
  • [3] Biparametric prostate MRI and clinical indicators predict clinically significant prostate cancer in men with "gray zone" PSA levels
    Wei, Chao-gang
    Chen, Tong
    Zhang, Yue-yue
    Pan, Peng
    Dai, Guang-cheng
    Yu, Hong-chang
    Yang, Shuo
    Jiang, Zhen
    Tu, Jian
    Lu, Zhi-hua
    Shen, Jun-kang
    Zhao, Wen-lu
    EUROPEAN JOURNAL OF RADIOLOGY, 2020, 127
  • [4] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Bernatz, Simon
    Ackermann, Joerg
    Mandel, Philipp
    Kaltenbach, Benjamin
    Zhdanovich, Yauheniya
    Harter, Patrick N.
    Doering, Claudia
    Hammerstingl, Renate
    Bodelle, Boris
    Smith, Kevin
    Bucher, Andreas
    Albrecht, Moritz
    Rosbach, Nicolas
    Basten, Lajos
    Yel, Ibrahim
    Wenzel, Mike
    Bankov, Katrin
    Koch, Ina
    Chun, Felix K-H
    Koellermann, Jens
    Wild, Peter J.
    Vogl, Thomas J.
    EUROPEAN RADIOLOGY, 2020, 30 (12) : 6757 - 6769
  • [5] Comparison of machine learning algorithms to predict clinically significant prostate cancer of the peripheral zone with multiparametric MRI using clinical assessment categories and radiomic features
    Simon Bernatz
    Jörg Ackermann
    Philipp Mandel
    Benjamin Kaltenbach
    Yauheniya Zhdanovich
    Patrick N. Harter
    Claudia Döring
    Renate Hammerstingl
    Boris Bodelle
    Kevin Smith
    Andreas Bucher
    Moritz Albrecht
    Nicolas Rosbach
    Lajos Basten
    Ibrahim Yel
    Mike Wenzel
    Katrin Bankov
    Ina Koch
    Felix K.-H. Chun
    Jens Köllermann
    Peter J. Wild
    Thomas J. Vogl
    European Radiology, 2020, 30 : 6757 - 6769
  • [6] Clinically significant prostate cancer detection on MRI: A radiomic shape features study
    Cuocolo, Renato
    Stanzione, Arnaldo
    Ponsiglione, Andrea
    Romeo, Valeria
    Verde, Francesco
    Creta, Massimiliano
    La Rocca, Roberto
    Longo, Nicola
    Pace, Leonardo
    Imbriaco, Massimo
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 : 144 - 149
  • [7] Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings
    Shiradkar, Rakesh
    Ghose, Soumya
    Jambor, Ivan
    Taimen, Pekka
    Ettala, Otto
    Purysko, Andrei S.
    Madabhushi, Anant
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (06) : 1626 - 1636
  • [8] Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer
    Lili Xu
    Gumuyang Zhang
    Bing Shi
    Yanhan Liu
    Tingting Zou
    Weigang Yan
    Yu Xiao
    Huadan Xue
    Feng Feng
    Jing Lei
    Zhengyu Jin
    Hao Sun
    Cancer Imaging, 19
  • [9] Biparametric versus multiparametric MRI in the diagnosis of prostate cancer
    Thestrup, Karen Cecilie Duus
    Logager, Vibeke
    Baslev, Ingerd
    Moller, Jakob M.
    Hansen, Rasmus Hvass
    Thomsen, Henrik S.
    ACTA RADIOLOGICA OPEN, 2016, 5 (08)
  • [10] Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer
    Xu, Lili
    Zhang, Gumuyang
    Shi, Bing
    Liu, Yanhan
    Zou, Tingting
    Yan, Weigang
    Xiao, Yu
    Xue, Huadan
    Feng, Feng
    Lei, Jing
    Jin, Zhengyu
    Sun, Hao
    CANCER IMAGING, 2019, 19 (01)