Data-Driven Modeling Approach for the Virtual Conversion of a Hybridized Passenger Car

被引:1
|
作者
Hagenbucher, Timo [1 ]
Milojevic, Sasa [2 ]
Grill, Michael [1 ]
Kulzer, Andre Casal [3 ]
机构
[1] FKFS, Simulat & Artif Intelligence, Stuttgart, Germany
[2] IFS Univ Stuttgart, Simulat & Artif Intelligence, Stuttgart, Germany
[3] IFS Univ Stuttgart, Automot Powertrain Syst, Stuttgart, Germany
关键词
Data-Driven; Digital Twin; LSTM; OBD; HIL;
D O I
10.1109/CAI54212.2023.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Physics-based modeling is an important and cost-efficient tool within the design process in vehicular technology. Creating and validating predictive 0D/1D models is a time-consuming process that requires extensive domain knowledge and specific experimental data for each sub-system to be modeled. To handle increasing complexity and variant diversity in the design process of hybrid vehicles, a data-driven modeling approach based on real driving data is introduced. A digital twin is derived using a power-split Ford Galaxy FHEV as an exemplary use case to validate the methodology. The digital twin is divided into four individually trained Long Short-Term Memory (LSTM) networks. Training data is acquired using a ROSI Dongle OBD data logger.
引用
收藏
页码:32 / 35
页数:4
相关论文
共 50 条
  • [41] Innovation: A data-driven approach
    Kusiak, Andrew
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2009, 122 (01) : 440 - 448
  • [42] AN APPROACH TO DATA-DRIVEN LEARNING
    MARKOV, Z
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 535 : 127 - 140
  • [43] Approach to data-driven learning
    Markov, Z.
    International Workshop on Fundamentals of Artificial Intelligence Research, 1991,
  • [44] Data-Driven Modelling of Car-Following Behavior in the Approach of Signalized Urban Intersections
    Harth, Michael
    Ali, Muhammad Sajid
    Kates, Ronald
    Bogenberger, Klaus
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1721 - 1728
  • [45] A Data-Driven Approach for Fault Diagnosis in Gearbox of Wind Energy Conversion System
    Krueger, Minjia
    Ding, Steven X.
    Haghani, Adel
    Engel, Peter
    Jeinsch, Torsten
    2013 2ND INTERNATIONAL CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2013, : 359 - 364
  • [46] Stalking the Materials Genome: A Data-Driven Approach to the Virtual Design of Nanostructured Polymers
    Breneman, Curt M.
    Brinson, L. Catherine
    Schadler, Linda S.
    Natarajan, Bharath
    Krein, Michael
    Wu, Ke
    Morkowchuk, Lisa
    Li, Yang
    Deng, Hua
    Xu, Hongyi
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (46) : 5746 - 5752
  • [47] EXPERIMENTAL STUDY AND MODULAR MODELING OF MAGNETOSTRICTIVE HYSTERESIS WITH DATA-DRIVEN APPROACH
    Yi, Sicheng
    Chen, Hao
    Jiang, Zhan
    Zhang, Quan
    2022 16TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS, SPAWDA, 2022, : 109 - 113
  • [48] Data-driven approach for modeling Reynolds stress tensor with invariance preservation
    Fu, Xuepeng
    Fu, Shixiao
    Liu, Chang
    Zhang, Mengmeng
    Hu, Qihan
    COMPUTERS & FLUIDS, 2024, 274
  • [49] Data-Driven Modeling of Miniature Hall Thrusters: A Machine Learning Approach
    el Abidine, Hebboul Zine
    Tang, Hai-Bin
    Wang, Zixiang
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL SYMPOSIUM ON INTELLIGENT UNMANNED SYSTEMS AND ARTIFICIAL INTELLIGENCE, SIUSAI 2024, 2024, : 216 - 220
  • [50] Learning Objective Agent Behavior using a Data-driven Modeling Approach
    Kamrani, Farzad
    Luotsinen, Linus J.
    Lovlid, Rikke Amilde
    2016 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2016, : 2175 - 2181