Development of a plasma-based 3D printing system for enhancing the biocompatibility of 3D scaffold

被引:1
|
作者
Kim, Seung Hyeon [1 ,2 ]
Lee, Jae Seo [1 ]
Lee, Sang Jin [3 ]
Nah, Haram [1 ,2 ]
Min, Sung Jun [1 ]
Moon, Ho Jin [4 ]
Bang, Jae Beum [5 ]
Kim, Han-Jun [6 ]
Kim, Won Jong [7 ]
Kwon, Il Keun [4 ,8 ]
Heo, Dong Nyoung [2 ,4 ]
机构
[1] Kyung Hee Univ, Grad Sch, Dept Dent, 26 Kyungheedae Ro, Seoul 02447, South Korea
[2] Biofriends Inc, 26 Kyungheedae Ro, Seoul 02447, South Korea
[3] Univ Hong Kong, Fac Dent, Div Appl Oral Sci & Community Dent Care, Biofunct Mat,Sai Ying Pun, 34 Hosp Rd, Hong Kong, Peoples R China
[4] Kyung Hee Univ, Sch Dent, Dept Dent Mat, 26 Kyungheedae Ro, Seoul 02447, South Korea
[5] Kyung Hee Univ, Sch Dent, Dept Dent Educ, 26 Kyungheedae Ro, Seoul 02447, South Korea
[6] Korea Univ, Coll Pharm, Sejong 30019, South Korea
[7] Pohang Univ Sci & Technol, POSTECH CATHOLIC Biomed Engn Inst, Dept Chem, San 31 Hyoja Dong, Pohang 37673, South Korea
[8] Kyung Hee Univ, Med Sci Res Inst, 23 Kyungheedae Ro, Seoul 02447, South Korea
基金
新加坡国家研究基金会;
关键词
3D printing; plasma treatment; poly(lactic acid); cell affinity; layer by layer deposition; SURFACE MODIFICATION; PROTEIN ADSORPTION; POLYMER SURFACES; CELL-ADHESION; WETTABILITY; IMMOBILIZATION; ACID;
D O I
10.1088/1758-5090/acdf86
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology typically used in tissue engineering. However, 3D-printed row scaffolds manufactured using material extrusion techniques have low cell affinity on the surface and an insufficient biocompatible environment for desirable tissue regeneration. Thus, in this study, plasma treatment was used to render surface modification for enhancing the biocompatibility of 3D-printed scaffolds. We designed a plasma-based 3D printing system with dual heads comprising a plasma device and a regular 3D FDM printer head for a layer-by-layer nitrogen plasma treatment. Accordingly, the wettability, roughness, and protein adsorption capability of the 3D-printed scaffold significantly increased with the plasma treatment time. Hence, the layer-by-layer plasma-treated (LBLT) scaffold exhibited significantly enhanced cell adhesion and proliferation in an in vitro assay. Furthermore, the LBLT scaffold demonstrated a higher tissue infiltration and lower collagen encapsulation than those demonstrated by a non-plasma-treated scaffold in an in vivo assay. Our approach has great potential for various tissue-engineering applications via the adjustment of gas or precursor levels. In particular, this system can fabricate scaffolds capable of holding a biocompatible surface on an entire 3D-printed strut. Thus, our one-step 3D printing approach is a promising platform to overcome the limitations of current biocompatible 3D scaffold engineering.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Is 3D printing an inclusive innovation?: An examination of 3D printing in Brazil
    Woodson, Thomas
    Alcantara, Julia Torres
    do Nascimento, Milena Silva
    TECHNOVATION, 2019, 80-81 : 54 - 62
  • [32] 3D Printing - Evaluating Particle Emissions of a 3D Printing Pen
    Sigloch, Heike
    Bierkandt, Frank S.
    Singh, Ajay, V
    Gadicherla, Ashish K.
    Laux, Peter
    Luch, Andreas
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (164): : 1 - 15
  • [33] Development of the Ultrasonic System Integration with 3D Polymer Printing
    England, Jonathan
    Darnell, Ethan
    Bhakta, Janak
    D'Orazio, Maria
    Chukovenkova, Mariya
    Zagrai, Andrei
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 2B, 2022,
  • [34] Polymer/hydrogel hybrid scaffold fabrication using 3D printing system
    Lee, J.
    Lee, S. H.
    Jang, S. H.
    Park, S. A.
    Kim, W. D.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 151 - 151
  • [35] 3D Printing for Repair: An Approach for Enhancing Repair
    van Oudheusden, Alma
    Bolanos Arriola, Julieta
    Faludi, Jeremy
    Flipsen, Bas
    Balkenende, Ruud
    SUSTAINABILITY, 2023, 15 (06)
  • [36] 3D Claying: 3D Printing and Recycling Clay
    Madrid, Javier Alonso
    Ortega, Guillermo Sotorrio
    Carabano, Javier Gorostiza
    Olsson, Nils O. E.
    Rios, Jose Antonio Tenorio
    CRYSTALS, 2023, 13 (03)
  • [37] Exploring Submarine 3D Printing: Enhancing Washout Resistance and Strength of 3D Printable Mortar
    Li, Leo Gu
    Zhang, Guang-Hu
    Kwan, Albert Kwok Hung
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2025, 37 (03)
  • [38] 3D printing-assisted design of scaffold structures
    Kantaros, Antreas
    Chatzidai, Nikoleta
    Karalekas, Dimitris
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 82 (1-4): : 559 - 571
  • [39] On the manufacturability of scaffold mould using a 3D printing technology
    Liu, C. Z.
    Sachlos, E.
    Wahl, D. A.
    Han, Z. W.
    Czernuszka, J. T.
    RAPID PROTOTYPING JOURNAL, 2007, 13 (03) : 163 - 174
  • [40] 3D printing process of oxidized nanocellulose and gelatin scaffold
    Xu, Xiaodong
    Zhou, Jiping
    Jiang, Yani
    Zhang, Qi
    Shi, Hongcan
    Liu, Dongfang
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (12) : 1498 - 1513