Comparative performance of Sentinel-2 MSI and Landsat-8 OLI data in canopy cover prediction using Random Forest model: Comparing model performance and tuning parameters

被引:4
|
作者
Bera, Dipankar [1 ]
Das Chatterjee, Nilanjana [1 ]
Bera, Sudip [1 ]
Ghosh, Subrata [1 ]
Dinda, Santanu [1 ]
机构
[1] Vidyasagar Univ, Dept Geog, Midnapore 721102, W Bengal, India
关键词
Sentinel-2; Landsat-8; Random forest modelling; Canopy cover; Spectral indices; Machine learning; CROP CHLOROPHYLL CONTENT; LEAF-AREA INDEX; LAND-COVER; VEGETATION INDEXES; SPECTRAL REFLECTANCE; REMOTE ESTIMATION; QUANTITATIVE ESTIMATION; TROPICAL SAVANNAS; FRACTIONAL COVER; WATER-STRESS;
D O I
10.1016/j.asr.2023.01.027
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Quantifying canopy cover using Random Forest (RF) model's appropriate tuning parameters value and sensor based predictor variables is always challenging, especially in fragmented dry deciduous forests. Therefore, this study was designed to compare the performances of Sentinel-2 and Landsat-8 based models using the RF model for predicting canopy cover with assessing variables' relative importance and correlation. Sentinel-2 and Landsat-8 based bands and spectral indices were used as predictor variables. We compared different mtry, ntree and bag fraction values of the RF model. R-square (R-2) and root mean square error (RMSE) were used for comparing the model performance. The results showed that the lowest RMSE value was associated with the default value (predictors/3) or more than the default value of mtry, with bag fraction 0.3-0.7 for Sentinel-2 and 0.3-0.4 for Landsat-8. Model accuracy has increased and stabilized with increase of ntree, and received the lowest RMSE to ntree of more than 1000. Except for SWIR indices based model of Landsat-8, all other Landsat-8 based model's accuracy was lesser compared to Sentinel-2 based models. Model accuracy of Sentinel-2 based full model (except red edge indices) was marginally better (R-2 = 0.899, RMSE = 6.883 %) than Landsat-8 based full model (R-2 = 0.886, RMSE = 7.089 %). But with the incorporation of red edge indices, full model RMSE had decreased further from 6.883 % to 6.747 %, and R-2 had increased from 0.899 to 0.918. The full model of Sentinel-2 tended to spread variable importance among more variables, but the full model of Landsat-8 slightly tends to concentrate variable importance with fewer variables. However, SWIR bands and indices were the most important predictor variables and highly correlated with canopy cover. These findings can solve the parameter value choice of RF model, and the use of the Sentinel-2 based model will be superior to Landsat-8 based model. (c) 2023 COSPAR. Published by Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:4691 / 4709
页数:19
相关论文
共 50 条
  • [11] Monitoring gas flaring in Texas using time-series sentinel-2 MSI and landsat-8 OLI images
    Wu, Wei
    Liu, Yongxue
    Rogers, Brendan M.
    Xu, Wenxuan
    Dong, Yanzhu
    Lu, Wanyu
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 114
  • [12] Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors
    Poddar, Shukla
    Chacko, Neethu
    Swain, Debadatta
    FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [13] A Multi-Channel Algorithm for Mapping Volcanic Thermal Anomalies by Means of Sentinel-2 MSI and Landsat-8 OLI Data
    Marchese, Francesco
    Genzano, Nicola
    Neri, Marco
    Falconieri, Alfredo
    Mazzeo, Giuseppe
    Pergola, Nicola
    REMOTE SENSING, 2019, 11 (23)
  • [14] Surface Wind Speed Estimation Over Open Ocean Using Bidirectional Observation by Sentinel-2/MSI and Landsat-8/OLI
    Fougnie, Bertrand
    Hagolle, Olivier
    Lacherade, Sophie
    EARTH OBSERVING SYSTEMS XXI, 2016, 9972
  • [15] Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms
    Ghayour, Laleh
    Neshat, Aminreza
    Paryani, Sina
    Shahabi, Himan
    Shirzadi, Ataollah
    Chen, Wei
    Al-Ansari, Nadhir
    Geertsema, Marten
    Pourmehdi Amiri, Mehdi
    Gholamnia, Mehdi
    Dou, Jie
    Ahmad, Anuar
    REMOTE SENSING, 2021, 13 (07)
  • [16] Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance*
    Khosravi, Vahid
    Gholizadeh, Asa
    Saberioon, Mohammadmehdi
    ENVIRONMENTAL POLLUTION, 2022, 310
  • [17] Landsat-8 and Sentinel-2 Canopy Water Content Estimation in Croplands through Radiative Transfer Model Inversion
    Boren, Erik J.
    Boschetti, Luigi
    REMOTE SENSING, 2020, 12 (17) : 1 - 27
  • [18] Validation of the Sentinel Simplified Level 2 Product Prototype Processor (SL2P) for mapping cropland biophysical variables using Sentinel-2/MSI and Landsat-8/OLI data
    Djamai, Najib
    Fernandes, Richard
    Weiss, Marie
    McNairn, Heather
    Goita, Kalifa
    REMOTE SENSING OF ENVIRONMENT, 2019, 225 : 416 - 430
  • [19] A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems
    Page, Benjamin P.
    Olmanson, Leif G.
    Mishra, Deepak R.
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [20] Comparative Performance Evaluation of Pixel-Level and Decision-Level Data Fusion of Landsat 8 OLI, Landsat 7 ETM+ and Sentinel-2 MSI for Crop Ensemble Classification
    Useya, Juliana
    Chen, Shengbo
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4441 - 4451