Deep learning-based methods in structural reliability analysis: a review

被引:6
|
作者
Afshari, Sajad Saraygord [1 ]
Zhao, Chuan [1 ,2 ]
Zhuang, Xinchen [3 ]
Liang, Xihui [1 ]
机构
[1] Univ Manitoba, Dept Mech Engn, Winnipeg, MB, Canada
[2] North China Inst Aerosp Engn, Sch Mech & Elect Engn, Langfang, Heibei, Peoples R China
[3] Tsinghua Univ, Dept Mech Engn, Beijing, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国博士后科学基金;
关键词
structural reliability analysis; response surface method; Monte Carlo simulation; surrogate modelling; deep learning; unsupervised methods; supervised methods; ARTIFICIAL NEURAL-NETWORK; DAMAGE DETECTION; BELIEF NETWORKS; REGRESSION; FAILURE; SYSTEM; MODEL; CLASSIFICATION; PREDICTION; CONCRETE;
D O I
10.1088/1361-6501/acc602
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the most significant and growing research fields in mechanical and civil engineering is structural reliability analysis (SRA). A reliable and precise SRA usually has to deal with complicated and numerically expensive problems. Artificial intelligence-based, and specifically, Deep learning-based (DL) methods, have been applied to the SRA problems to reduce the computational cost and to improve the accuracy of reliability estimation as well. This article reviews the recent advances in using DL models in SRA problems. The review includes the most common categories of DL-based methods used in SRA. More specifically, the application of supervised methods, unsupervised methods, and hybrid DL methods in SRA are explained. In this paper, the supervised methods for SRA are categorized as multi-layer perceptron, convolutional neural networks, recurrent neural networks, long short-term memory, Bidirectional LSTM and gated recurrent units. For the unsupervised methods, we have investigated methods such as generative adversarial network, autoencoders, self-organizing map, restricted Boltzmann machine, and deep belief network. We have made a comprehensive survey of these methods in SRA. Aiming towards an efficient SRA, DL-based methods applied for approximating the limit state function with first/second order reliability methods, Monte Carlo simulation (MCS), or MCS with importance sampling. Accordingly, the current paper focuses on the structure of different DL-based models and the applications of each DL method in various SRA problems. This survey helps researchers in mechanical and civil engineering, especially those who are engaged with structural and reliability analysis or dealing with quality assurance problems.
引用
收藏
页数:34
相关论文
共 50 条
  • [31] Editorial: Weakly supervised deep learning-based methods for brain image analysis
    Zhu, Hancan
    Liu, Mingxia
    Tang, Zhenyu
    Wang, Shuai
    FRONTIERS IN NEUROINFORMATICS, 2022, 16
  • [32] A Deep Learning-Based Reliability Model for Complex Survival Data
    Aminisharifabad, Mohammad
    Yang, Qingyu
    Wu, Xin
    IEEE TRANSACTIONS ON RELIABILITY, 2021, 70 (01) : 73 - 81
  • [33] A Reliability Quantification Method for Deep Reinforcement Learning-Based Control
    Yoshioka, Hitoshi
    Hashimoto, Hirotada
    ALGORITHMS, 2024, 17 (07)
  • [34] A review of the research and application of deep learning-based computer vision in structural damage detection
    Zhang Lingxin
    Shen Junkai
    Zhu Baijie
    EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION, 2022, 21 (01) : 1 - 21
  • [35] A review of the research and application of deep learning-based computer vision in structural damage detection
    Zhang Lingxin
    Shen Junkai
    Zhu Baijie
    Earthquake Engineering and Engineering Vibration, 2022, 21 (01) : 1 - 21
  • [36] A review of deep learning-based three-dimensional medical image registration methods
    Xiao, Haonan
    Teng, Xinzhi
    Liu, Chenyang
    Li, Tian
    Ren, Ge
    Yang, Ruijie
    Shen, Dinggang
    Cai, Jing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (12) : 4895 - 4916
  • [37] Deep Federated Machine Learning-Based Optimization Methods for Liver Tumor Diagnosis: A Review
    Ahmed M. Anter
    Laith Abualigah
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 3359 - 3378
  • [38] A review of the research and application of deep learning-based computer vision in structural damage detection
    Zhang Lingxin
    Shen Junkai
    Zhu Baijie
    Earthquake Engineering and Engineering Vibration, 2022, 21 : 1 - 21
  • [39] Deep Learning-Based Computer Vision Methods for Complex Traffic Environments Perception: A Review
    Talha Azfar
    Jinlong Li
    Hongkai Yu
    Ruey L. Cheu
    Yisheng Lv
    Ruimin Ke
    Data Science for Transportation, 2024, 6 (1):
  • [40] Review of deep learning-based methods for non-destructive evaluation of agricultural products
    Li, Zhenye
    Wang, Dongyi
    Zhu, Tingting
    Tao, Yang
    Ni, Chao
    BIOSYSTEMS ENGINEERING, 2024, 245 : 56 - 83