Packing topological entropy for amenable group actions

被引:6
|
作者
Dou, Dou [1 ]
Zheng, Dongmei [2 ]
Zhou, Xiaomin [3 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Tech Univ, Sch Phys & Math Sci, Nanjing 211816, Jiangsu, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
packing topological entropy; amenable group; variational principle; generic point; GENERIC POINTS; PRESSURE; THEOREMS;
D O I
10.1017/etds.2021.126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Packing topological entropy is a dynamical analogy of the packing dimension, which can be viewed as a counterpart of Bowen topological entropy. In the present paper we give a systematic study of the packing topological entropy for a continuous G-action dynamical system (X, G), where X is a compact metric space and G is a countable infinite discrete amenable group. We first prove a variational principle for amenable packing topological entropy: for any Borel subset Z of X, the packing topological entropy of Z equals the supremum of upper local entropy over all Borel probability measures for which the subset Z has full measure. Then we obtain an entropy inequality concerning amenable packing entropy. Finally, we show that the packing topological entropy of the set of generic points for any invariant Borel probability measure mu coincides with the metric entropy if either mu is ergodic or the system satisfies a kind of specification property.
引用
收藏
页码:480 / 514
页数:35
相关论文
共 50 条
  • [41] Bowen entropy for actions of amenable groups
    Dongmei Zheng
    Ercai Chen
    [J]. Israel Journal of Mathematics, 2016, 212 : 895 - 911
  • [42] Bowen entropy for actions of amenable groups
    Zheng, Dongmei
    Chen, Ercai
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2016, 212 (02) : 895 - 911
  • [43] Multiorders in amenable group actions
    Downarowicz, Tomasz
    Oprocha, Piotr
    Wiecek, Mateusz
    Zhang, Guohua
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 25 - 65
  • [44] THE ABRAMOV-ROKHLIN ENTROPY ADDITION FORMULA FOR AMENABLE GROUP-ACTIONS
    WARD, T
    ZHANG, Q
    [J]. MONATSHEFTE FUR MATHEMATIK, 1992, 114 (3-4): : 317 - 329
  • [45] THE WORK OF LEWIS BOWEN ON THE ENTROPY THEORY OF NON-AMENABLE GROUP ACTIONS
    Thouvenot, Jean-Paul
    [J]. JOURNAL OF MODERN DYNAMICS, 2019, 15 : 133 - 141
  • [46] Asymptotic pairs in topological actions of amenable groups
    Downarowicz, Tomasz
    Wiecek, Mateusz
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 398 : 373 - 394
  • [47] Zero entropy actions of amenable groups are not dominant
    Lott, Adam
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (02) : 630 - 645
  • [48] Amenable groups, topological entropy and Betti numbers
    Elek, G
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2002, 132 (1) : 315 - 335
  • [49] Dual entropy in discrete groups with amenable actions
    Brown, NP
    Germain, E
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 : 711 - 728
  • [50] Amenable groups, topological entropy and Betti numbers
    Gábor Elek
    [J]. Israel Journal of Mathematics, 2002, 132 : 315 - 335