Curvature distribution, relative presentations and hyperbolicity with an application to Fibonacci groups

被引:0
|
作者
Chalk, Christopher P. [1 ]
Edjvet, Martin [2 ]
Juhasz, Arye [3 ]
机构
[1] 34 Brotherton Dr, Manchester M3 6BH, England
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[3] Technion Israel Inst Technol, Dept Math, IL-3200 Haifa, Israel
关键词
Hyperbolic group; van Kampen diagram; Curvature distribution; Relative group presentation; Relative diagram;
D O I
10.1016/j.jalgebra.2024.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite presentation for a group G which can also be realised as a relative presentation we give conditions on the relative presentation which, if satisfied, proves G hyperbolic. Using a curvature distribution method we confirm these conditions for the length four one -relator relative presentation (u, t |tn, tmutu-r) for many values of r and n deduce that the corresponding generalised Fibonacci groups F(r, n) are hyperbolic. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:796 / 834
页数:39
相关论文
共 50 条