Curvature distribution, relative presentations and hyperbolicity with an application to Fibonacci groups

被引:0
|
作者
Chalk, Christopher P. [1 ]
Edjvet, Martin [2 ]
Juhasz, Arye [3 ]
机构
[1] 34 Brotherton Dr, Manchester M3 6BH, England
[2] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[3] Technion Israel Inst Technol, Dept Math, IL-3200 Haifa, Israel
关键词
Hyperbolic group; van Kampen diagram; Curvature distribution; Relative group presentation; Relative diagram;
D O I
10.1016/j.jalgebra.2024.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite presentation for a group G which can also be realised as a relative presentation we give conditions on the relative presentation which, if satisfied, proves G hyperbolic. Using a curvature distribution method we confirm these conditions for the length four one -relator relative presentation (u, t |tn, tmutu-r) for many values of r and n deduce that the corresponding generalised Fibonacci groups F(r, n) are hyperbolic. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:796 / 834
页数:39
相关论文
共 50 条
  • [1] Curvature distribution and hyperbolicity
    Chalk, Christopher P.
    Edjvet, Martin
    JOURNAL OF GROUP THEORY, 2023, 26 (04) : 645 - 663
  • [2] The relative hyperbolicity of one-relator relative presentations
    Giang, Le Thi
    JOURNAL OF GROUP THEORY, 2009, 12 (06) : 949 - 959
  • [3] Fibonacci groups with aspherical presentations
    Chalk, CP
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (05) : 1511 - 1546
  • [4] Relative hyperbolicity and Artin groups
    Ruth Charney
    John Crisp
    Geometriae Dedicata, 2007, 129 : 1 - 13
  • [5] Relative Hyperbolicity and Artin Groups
    Ilya Kapovich
    Paul Schupp
    Geometriae Dedicata, 2004, 107 : 153 - 167
  • [6] Relative hyperbolicity and Artin groups
    Charney, Ruth
    Crisp, John
    GEOMETRIAE DEDICATA, 2007, 129 (01) : 1 - 13
  • [7] Relative hyperbolicity and Artin groups
    Kapovich, I
    Schupp, P
    GEOMETRIAE DEDICATA, 2004, 107 (01) : 153 - 167
  • [8] Relative hyperbolicity and relative quasiconvexity for countable groups
    Hruska, G. Christopher
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (03): : 1807 - 1856
  • [9] HELLY GROUPS, COARSELY HELLY GROUPS, AND RELATIVE HYPERBOLICITY
    Osajda, Damian
    Valiunas, Motiejus
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (03) : 1505 - 1542
  • [10] Thickness, relative hyperbolicity, and randomness in Coxeter groups
    Behrstock, Jason
    Hagen, Mark F.
    Sisto, Alessandro
    Caprace, Pierre-Emmanuel
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (02): : 705 - 740