An enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning

被引:11
|
作者
Wang, Jujie [1 ]
Liu, Jing [1 ]
Jiang, Weiyi [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Management Sci & Engn, Nanjing 210044, Peoples R China
关键词
Interval multi-scale decomposition; Comprehensive feature extraction; Optimized deep learning; Interval-valued stock price forecast; HYBRID; ENSEMBLE;
D O I
10.1016/j.eswa.2023.122891
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the purpose of managing financial risk and making investment decisions, interval stock price forecasting is essential. Currently, decomposition integration frameworks are widely used in point-valued stock price forecasting studies, mainly focusing on mining internal information. However, point forecasts are difficult to adequately capture price uncertainty and may suffer from loss of volatile information. Therefore, this paper proposes an enhanced interval-valued decomposition integration model for stock price prediction based on comprehensive feature extraction and optimized deep learning. Firstly, the interval variational modal decomposition with feedback mechanism (FIVMD) is proposed to extract internal features and can decompose interval values into interval trend and residual. FIVMD not only solves the interval decomposition challenge, but also helps to improve the internal feature extraction capability. Secondly, while considering the influencing factors more comprehensively, appropriate feature selection and compression techniques can effectively achieve external feature extraction, obtain the best influencing factors, and improve the modeling capability of highdimensional data. Finally, the final prediction results are obtained by modeling the interval trend and residuals separately through the optimization algorithm and deep learning model to improve the prediction accuracy. The results of the empirical analysis reveal that the proposed interval decomposition integrated model has the smallest of the three evaluation metrics, where the values of interval mean average percentage errors (IMAPE) are 1.8188%, 1.1244%, 1.9001%, and 2.1542% respectively. This shows that the model is significantly more accurate and stable than the other comparative models, and it is a successful model for predicting intervalvalued stock prices.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Using Deep Learning to Develop a Stock Price Prediction Model Based on Individual Investor Emotions
    Chun, Jaeheon
    Ahn, Jaejoon
    Kim, Youngmin
    Lee, Sukjun
    JOURNAL OF BEHAVIORAL FINANCE, 2021, 22 (04) : 480 - 489
  • [42] Accurate Stock Price Forecasting Based on Deep Learning and Hierarchical Frequency Decomposition
    Li, Yi
    Chen, Lei
    Sun, Cuiping
    Liu, Guoxu
    Chen, Chunlei
    Zhang, Yonghui
    IEEE ACCESS, 2024, 12 : 49878 - 49894
  • [43] Research on Stock Price Prediction Model based on GA Optimized SVM Parameters
    Liang Bang-long
    Lin Jie
    Yuan Guanghui
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2016, 10 (07): : 269 - 279
  • [44] Carbon price prediction model based on adaptive variational mode decomposition and optimized extreme learning machine
    W. Sun
    Z. Xu
    International Journal of Environmental Science and Technology, 2023, 20 : 103 - 123
  • [45] Carbon price prediction model based on adaptive variational mode decomposition and optimized extreme learning machine
    Sun, W.
    Xu, Z.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (01) : 103 - 123
  • [46] Deep learning model with sentiment score and weekend effect in stock price prediction
    Jingyi Gu
    Sarvesh Shukla
    Junyi Ye
    Ajim Uddin
    Guiling Wang
    SN Business & Economics, 3 (7):
  • [47] Agricultural product price prediction based on signal decomposition and deep learning
    Wang R.
    Zhang X.
    Wang M.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (24): : 256 - 267
  • [48] Stock price prediction model based on BP neural network for feature selection
    Lin, Chaoxiong
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [49] A deep learning-based model for stock price prediction under consideration of financial news publishers
    Zhou, Quanshi
    Jia, Lifen
    Chen, Wei
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2024,
  • [50] Deep Learning-based Integrated Framework for stock price movement prediction
    Zhao, Yanli
    Yang, Guang
    APPLIED SOFT COMPUTING, 2023, 133