Applications of Machine Learning to Diagnosis of Parkinson's Disease

被引:2
|
作者
Lai, Hong [1 ,2 ]
Li, Xu-Ying [1 ]
Xu, Fanxi [1 ]
Zhu, Junge [1 ]
Li, Xian [1 ]
Song, Yang [1 ]
Wang, Xianlin [1 ]
Wang, Zhanjun [1 ]
Wang, Chaodong [1 ]
机构
[1] Capital Med Univ, Xuanwu Hosp, Natl Clin Res Ctr Geriatr Dis, Dept Neurol, Beijing 100053, Peoples R China
[2] Gannan Med Univ, Affiliated Hosp 1, Dept Neurol, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Parkinson's disease; external validation; machine learning; support vector machine; diagnostic accuracy; EXCESSIVE DAYTIME SLEEPINESS; RISK-FACTORS; NONMOTOR FEATURES; IDENTIFICATION; METAANALYSIS; EPIDEMIOLOGY; ASSOCIATION; DEPRESSION; VARIANTS; PREMOTOR;
D O I
10.3390/brainsci13111546
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Accurate diagnosis of Parkinson's disease (PD) is challenging due to its diverse manifestations. Machine learning (ML) algorithms can improve diagnostic precision, but their generalizability across medical centers in China is underexplored. Objective: To assess the accuracy of an ML algorithm for PD diagnosis, trained and tested on data from different medical centers in China. Methods: A total of 1656 participants were included, with 1028 from Beijing (training set) and 628 from Fuzhou (external validation set). Models were trained using the least absolute shrinkage and selection operator-logistic regression (LASSO-LR), decision tree (DT), random forest (RF), eXtreme gradient boosting (XGboost), support vector machine (SVM), and k-nearest neighbor (KNN) techniques. Hyperparameters were optimized using five-fold cross-validation and grid search techniques. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, accuracy, sensitivity (recall), specificity, precision, and F1 score. Variable importance was assessed for all models. Results: SVM demonstrated the best differentiation between healthy controls (HCs) and PD patients (AUC: 0.928, 95% CI: 0.908-0.947; accuracy: 0.844, 95% CI: 0.814-0.871; sensitivity: 0.826, 95% CI: 0.786-0.866; specificity: 0.861, 95% CI: 0.820-0.898; precision: 0.849, 95% CI: 0.807-0.891; F1 score: 0.837, 95% CI: 0.803-0.868) in the validation set. Constipation, olfactory decline, and daytime somnolence significantly influenced predictability. Conclusion: We identified multiple pivotal variables and SVM as a precise and clinician-friendly ML algorithm for prediction of PD in Chinese patients.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Alternate fluency in Parkinson's disease: A machine learning analysis
    Ferrucci, Roberta
    Mameli, Francesca
    Ruggiero, Fabiana
    Reitano, Mariella
    Miccoli, Mario
    Gemignani, Angelo
    Conversano, Ciro
    Dini, Michelangelo
    Zago, Stefano
    Piacentini, Silvie
    Poletti, Barbara
    Priori, Alberto
    Orru, Graziella
    PLOS ONE, 2022, 17 (03):
  • [42] Identification of Parkinson's Disease Using Machine Learning Algorithms
    Ulagamuthalvi, V
    Kulanthaivel, G.
    Reddy, G. Nikhil
    Venugopal, G.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (02): : 576 - 579
  • [43] Comparison of Machine learning models for Parkinson's Disease prediction
    Kumar, Tapan
    Sharma, Pradyumn
    Prakash, Nupur
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 195 - 199
  • [44] Early Detection of Parkinson's Disease Using Machine Learning
    Salunkhe, Shweta S.
    Ganveer, Samita
    Bire, Himani
    Deshmukh, Rutuja
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 2255 - 2266
  • [45] Fxploring Machine Learning to Analyze Parkinson's Disease Patients
    Urcuqui, Christian
    Castano, Yor
    Delgado, Jhoan
    Navarro, Andres
    Diaz, Javier
    Munoz, Beatriz
    Orozco, Jorge
    2018 14TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2018, : 160 - 166
  • [46] Machine Learning in the Parkinson's disease smartwatch (PADS) dataset
    Varghese, Julian
    Brenner, Alexander
    Fujarski, Michael
    van Alen, Catharina Marie
    Plagwitz, Lucas
    Warnecke, Tobias
    NPJ PARKINSONS DISEASE, 2024, 10 (01)
  • [47] Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis
    Battineni, Gopi
    Sagaro, Getu Gamo
    Chinatalapudi, Nalini
    Amenta, Francesco
    JOURNAL OF PERSONALIZED MEDICINE, 2020, 10 (02):
  • [48] Integrative gene expression analysis for the diagnosis of Parkinson's disease using machine learning and explainable AI
    Bhandari, Nikita
    Walambe, Rahee
    Kotecha, Ketan
    Kaliya, Mehul
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [49] An Intelligent System on Computer-Aided Diagnosis for Parkinson's Disease with MRI Using Machine Learning
    Naren, J.
    Ramalingam, Praveena
    Rajeswari, U. Raja
    Vijayalakshmi, P.
    Vithya, G.
    BIOLOGICALLY INSPIRED TECHNIQUES IN MANY-CRITERIA DECISION MAKING, 2020, 10 : 159 - 165
  • [50] Computational Diagnosis of Parkinson's Disease Directly from Natural Speech using Machine Learning Techniques
    Frid, Alex
    Hazan, Hananel
    Hilu, Dan
    Manevitz, Larry
    Ramig, Lorraine O.
    Sapir, Shimon
    2014 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE SCIENCE, TECHNOLOGY AND ENGINEERING (SWSTE), 2014, : 50 - 53