Machine learning-based models for the prediction of breast cancer recurrence risk

被引:9
|
作者
Zuo, Duo [1 ,2 ,3 ,4 ,5 ]
Yang, Lexin [1 ,2 ,3 ,4 ,5 ]
Jin, Yu [1 ,6 ]
Qi, Huan [7 ]
Liu, Yahui [1 ,2 ,3 ,4 ,5 ]
Ren, Li [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tianjin Med Univ, Dept Clin Lab, Canc Inst & Hosp, Tianjin 300060, Peoples R China
[2] Natl Clin Res Ctr Canc, Tianjin 300060, Peoples R China
[3] Tianjins Clin Res Ctr Canc, Tianjin 300060, Peoples R China
[4] Key Lab Canc Prevent & Therapy, Tianjin 300060, Peoples R China
[5] Tianjin Med Univ, Key Lab Breast Canc Prevent & Therapy, Minist Educ, Tianjin 300060, Peoples R China
[6] Tongji Univ, Canc Ctr, Shanghai Peoples Hosp 10, Sch Med, Shanghai 200072, Peoples R China
[7] China Mobile Grp Tianjin Co Ltd, Tianjin 300130, Peoples R China
关键词
Breast cancer; Machine learning; Artificial intelligence; Disease recurrence; Prediction model; PLASMA-FIBRINOGEN LEVEL; ARTIFICIAL-INTELLIGENCE; HEALTH-CARE; FOLLOW-UP; SURVIVAL; OVARIAN; CA125; CLASSIFICATION; PROGNOSIS; INDICATOR;
D O I
10.1186/s12911-023-02377-z
中图分类号
R-058 [];
学科分类号
摘要
Breast cancer is the most common malignancy diagnosed in women worldwide. The prevalence and incidence of breast cancer is increasing every year; therefore, early diagnosis along with suitable relapse detection is an important strategy for prognosis improvement. This study aimed to compare different machine algorithms to select the best model for predicting breast cancer recurrence. The prediction model was developed by using eleven different machine learning (ML) algorithms, including logistic regression (LR), random forest (RF), support vector classification (SVC), extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), decision tree, multilayer perceptron (MLP), linear discriminant analysis (LDA), adaptive boosting (AdaBoost), Gaussian naive Bayes (GaussianNB), and light gradient boosting machine (LightGBM), to predict breast cancer recurrence. The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F1 score were used to evaluate the performance of the prognostic model. Based on performance, the optimal ML was selected, and feature importance was ranked by Shapley Additive Explanation (SHAP) values. Compared to the other 10 algorithms, the results showed that the AdaBoost algorithm had the best prediction performance for successfully predicting breast cancer recurrence and was adopted in the establishment of the prediction model. Moreover, CA125, CEA, Fbg, and tumor diameter were found to be the most important features in our dataset to predict breast cancer recurrence. More importantly, our study is the first to use the SHAP method to improve the interpretability of clinicians to predict the recurrence model of breast cancer based on the AdaBoost algorithm. The AdaBoost algorithm offers a clinical decision support model and successfully identifies the recurrence of breast cancer.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Machine learning models in breast cancer survival prediction
    Montazeri, Mitra
    Montazeri, Mohadeseh
    Montazeri, Mahdieh
    Beigzadeh, Amin
    TECHNOLOGY AND HEALTH CARE, 2016, 24 (01) : 31 - 42
  • [22] Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients
    Kokkotis, Christos
    Moustakidis, Serafeim
    Giakas, Giannis
    Tsaopoulos, Dimitrios
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [23] MRI Radiomics of Breast Cancer: Machine Learning-Based Prediction of Lymphovascular Invasion Status
    Kayadibi, Yasemin
    Kocak, Burak
    Ucar, Nese
    Akan, Yesim Namdar
    Yildirim, Emine
    Bektas, Sibel
    ACADEMIC RADIOLOGY, 2022, 29 : S126 - S134
  • [24] Machine learning-based prediction models for accidental hypothermia patients
    Yohei Okada
    Tasuku Matsuyama
    Sachiko Morita
    Naoki Ehara
    Nobuhiro Miyamae
    Takaaki Jo
    Yasuyuki Sumida
    Nobunaga Okada
    Makoto Watanabe
    Masahiro Nozawa
    Ayumu Tsuruoka
    Yoshihiro Fujimoto
    Yoshiki Okumura
    Tetsuhisa Kitamura
    Ryoji Iiduka
    Shigeru Ohtsuru
    Journal of Intensive Care, 9
  • [25] Machine Learning-Based Models for Prediction of Toxicity Outcomes in Radiotherapy
    Isaksson, Lars J.
    Pepa, Matteo
    Zaffaroni, Mattia
    Marvaso, Giulia
    Alterio, Daniela
    Volpe, Stefania
    Corrao, Giulia
    Augugliaro, Matteo
    Starzynska, Anna
    Leonardi, Maria C.
    Orecchia, Roberto
    Jereczek-Fossa, Barbara A.
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [26] Machine learning-based prediction models for accidental hypothermia patients
    Okada, Yohei
    Matsuyama, Tasuku
    Morita, Sachiko
    Ehara, Naoki
    Miyamae, Nobuhiro
    Jo, Takaaki
    Sumida, Yasuyuki
    Okada, Nobunaga
    Watanabe, Makoto
    Nozawa, Masahiro
    Tsuruoka, Ayumu
    Fujimoto, Yoshihiro
    Okumura, Yoshiki
    Kitamura, Tetsuhisa
    Iiduka, Ryoji
    Ohtsuru, Shigeru
    JOURNAL OF INTENSIVE CARE, 2021, 9 (01)
  • [27] Introducing machine learning-based prediction models in the perioperative setting
    Gogenur, Ismail
    BRITISH JOURNAL OF SURGERY, 2023, 110 (05) : 533 - 535
  • [28] Lung Cancer Risk Prediction with Machine Learning Models
    Dritsas, Elias
    Trigka, Maria
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (04)
  • [29] Exploring Machine Learning Models for Recurrence Prediction in Lung Cancer Patients
    Ramesh, Priyanka
    Jain, Anika
    Karuppasamy, Ramanathan
    Veerappapillai, Shanthi
    INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH, 2022, 56 (03) : S398 - S406
  • [30] A machine learning-based diabetes risk prediction modeling study
    Ming, Jiexiu
    Xu, Junyi
    Zhang, Miaomiao
    Li, Ningyu
    Yan, Xu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 363 - 369