Physics-Aware Motion Simulation For T2*-Weighted Brain MRI

被引:3
|
作者
Eichhorn, Hannah [1 ,2 ]
Hammernik, Kerstin [2 ]
Spieker, Veronika [1 ,2 ,3 ]
Epp, Samira M. [3 ,4 ]
Rueckert, Daniel [2 ,3 ,5 ]
Preibisch, Christine [3 ]
Schnabel, Julia A. [1 ,2 ,6 ]
机构
[1] Helmholtz Munich, Inst Machine Learning Biomed Imaging, Neuherberg, Germany
[2] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[3] Tech Univ Munich, Sch Med, Munich, Germany
[4] Ludwig Maximilians Univ Munchen, Grad Sch Syst Neurosci, Munich, Germany
[5] Imperial Coll London, Dept Comp, London, England
[6] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
关键词
Brain MRI; Motion Artefacts; Motion Detection; Motion Correction; Deep Learning;
D O I
10.1007/978-3-031-44689-4_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a realistic, physics-aware motion simulation procedure for T-2*-weighted magnetic resonance imaging (MRI) to improve learning-based motion correction. As T-2*-weighted MRI is highly sensitive to motion-related changes in magnetic field inhomogeneities, it is of utmost importance to include physics information in the simulation. Additionally, current motion simulations often only assume simplified motion patterns. Our simulations, on the other hand, include real recorded subject motion and realistic effects of motioninduced magnetic field inhomogeneity changes. We demonstrate the use of such simulated data by training a convolutional neural network to detect the presence of motion in affected k-space lines. The network accurately detects motion-affected k-space lines for simulated displacements down to >= 0.5mm (accuracy on test set: 92.5%). Finally, our results demonstrate exciting opportunities of simulation-based k-space line detection combined with more powerful reconstruction methods. Our code is publicly available at: https://github.com/HannahEichhorn/ T2starLineDet.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 50 条
  • [31] A Case of Specific MRI T2*Weighted Image Associated with Bacterial Endocarditis
    Takeshita, Tomonori
    Morofuji, Yoichi
    Ujifuku, Kenta
    Hiu, Takeshi
    Hayashi, Kentaro
    Kitagawa, Naoki
    Tsutsumi, Keisuke
    Hayashi, Tomayoshi
    Nagata, Izumi
    NEUROLOGICAL SURGERY, 2008, 36 (09): : 789 - 794
  • [32] Hypointense leptomeningeal vessels at T2*-weighted MRI in acute ischemic stroke
    Hermier, M
    Nighoghossian, N
    Derex, L
    Wiart, M
    Nemoz, C
    Berthezène, Y
    Froment, JC
    NEUROLOGY, 2005, 65 (04) : 652 - 653
  • [33] PCV chemotherapy for oligodendroglioma: response analyzed on T2 Weighted-MRI
    Diabira, S
    Rousselet, MC
    Gamelin, E
    Soulier, P
    Jadaud, E
    Menei, P
    JOURNAL OF NEURO-ONCOLOGY, 2001, 55 (01) : 45 - 50
  • [34] T2*weighted placental MRI in relation to placental histology and birth weight
    Sinding, Marianne
    Sorensen, Anne
    Hansen, Ditte N.
    Peters, David A.
    Frokjaer, Jens B.
    Petersen, Astrid C.
    PLACENTA, 2021, 114 : 52 - 55
  • [35] Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities
    Glatz, Andreas
    Bastin, Mark E.
    Kiker, Alexander J.
    Deary, Ian J.
    Wardlaw, Joanna M.
    Hernandez, Maria C. Valdes
    NEUROIMAGE, 2015, 105 : 332 - 346
  • [36] Mechanism of small deep infarcts evaluated by T2*-weighted dynamic MRI
    Okubo, S
    Igarashi, H
    Hamamoto, M
    Nagashima, J
    Katayama, Y
    STROKE, 2000, 31 (11) : 2806 - 2806
  • [37] ASSESSMENT OF BRAIN MATURATION BY T2-WEIGHTED MRI
    HASSINK, RI
    HILTBRUNNER, B
    MULLER, S
    LUTSCHG, J
    NEUROPEDIATRICS, 1992, 23 (02) : 72 - 74
  • [38] Performance Evaluation of Image Characteristics by Changing Parameters in Brain T2 Weighted Neuroimages using MRiLab Simulation
    Lim, Jun
    Kang, Seong-Hyeon
    Park, Chan Rok
    Lee, Youngjin
    JOURNAL OF MAGNETICS, 2021, 26 (01) : 41 - 49
  • [39] T2 perfusion MRI
    Barbier, E. L.
    JOURNAL DE RADIOLOGIE DIAGNOSTIQUE ET INTERVENTIONNELLE, 2013, 94 (12) : 1203 - 1207
  • [40] Physics-guided self-supervised learning for retrospective T1 and T2 mapping from conventional weighted brain MRI: Technical developments and initial validation in glioblastoma
    Qiu, Shihan
    Wang, Lixia
    Sati, Pascal
    Christodoulou, Anthony G.
    Xie, Yibin
    Li, Debiao
    MAGNETIC RESONANCE IN MEDICINE, 2024, 92 (06) : 2683 - 2695