Nanoparticles and their potential role in plant adaptation to abiotic stress in horticultural crops: A review

被引:34
|
作者
Hayat, Faisal [1 ]
Khanum, Fakhara [2 ]
Li, Juan [1 ]
Iqbal, Shahid [3 ]
Khan, Ummara [4 ]
Javed, Hafiz Umer [5 ]
Razzaq, Muhammad Khuram [6 ]
Altaf, Muhammad Ahsan [7 ]
Peng, Yang [1 ]
Ma, Xiaoyan [1 ]
Li, Caiqin [1 ]
Tu, Panfeng [1 ]
Chen, Jiezhong [8 ]
机构
[1] Zhongkai Univ Agr & Engn, Coll Hort, Guangzhou, Guangdong, Peoples R China
[2] Univ Agr Dera Ismail Khan, Fac Food Sci, Dera Ismail Khan 29220, Pakistan
[3] Univ Florida, North Florida Res & Educ Ctr, Hort Sci Dept, IFAS, Quincy, FL 32351 USA
[4] Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Peoples R China
[5] Zhongkai Univ Agr & Engn, Coll Chem & Chem Engn, Guangzhou 510225, Peoples R China
[6] Nanjing Agr Univ, Soybean Res Inst, Natl Ctr Soybean Improvement, Nanjing 210095, Peoples R China
[7] Hainan Univ, Coll Hort, Hainan 570228, Peoples R China
[8] South China Agr Univ, Coll Hort, Guangzhou 510642, Peoples R China
关键词
Horticulture; Abiotic stress; Antioxidants; Defense system; Nanotechnology; SILICON NANOPARTICLES; OXIDATIVE STRESS; IN-VITRO; TOLERANCE; GROWTH; SALINITY; L; ALLEVIATION; MECHANISMS; SILVER;
D O I
10.1016/j.scienta.2023.112285
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Abiotic stresses such as salinity, drought, heavy metals, and extreme temperatures are a major constraint that negatively affect growth and productivity of horticultural plants. In order to mitigate the negative consequences of abiotic stresses, various approaches have been utilized to enhance plant resistance through genetic improvements, demanding extensive breeding programmes and substantial financial investments. In this regard, various nanoparticles (NPs) such as zinc oxide, silicon oxide, magnesium oxide, iron oxide, aluminum oxide, copper oxide and silver nanoparticles have exhibited their potential in boosting the performance of horticultural plants amidst challenging conditions. In general, NPs enhance plant resistance to stress factors by strengthening the physical barrier, facilitating the uptake and transport of essential minerals and nutrients, improving photosynthetic efficiency, increasing the synthesis of anti-stress compounds and modulating hormone balance, particularly auxins and gibberellins confirms their effectiveness in promoting plant tolerance to various abiotic stresses. Additionally, NPs can potentially mitigate oxidative damage induced by abiotic stresses by scavenging reactive oxygen species (ROS) and activating antioxidant defense mechanisms. This review aims to highlight the valuable insights regarding the application of NPs as a promising approach for enhancing the resilience of horticultural plants and ensuring food security in a changing environment. Despite the positive outcomes observed in improving plant performance under abiotic stresses, the molecular mechanisms responsible for the positive effects of NPs are still being unraveled. More research is needed to investigate the long-term consequences, safety concerns, and optimal application methods of NPs in horticultural plants.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Characteristics of bHLH transcription factors and their roles in the abiotic stress responses of horticultural crops
    Wang, Kangning
    Liu, Huayu
    Mei, Quanlin
    Yang, Jie
    Ma, Fengwang
    Mao, Ke
    SCIENTIA HORTICULTURAE, 2023, 310
  • [22] Plant Biostimulants to Enhance Abiotic Stress Resilience in Crops
    Di Sario, Luciana
    Boeri, Patricia
    Matus, Jose Tomas
    Pizzio, Gaston A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [23] Humic substances and plant abiotic stress adaptation
    Canellas, Luciano Pasqualoto
    da Silva, Rakiely Martins
    Busato, Jader Galba
    Olivares, Fabio Lopes
    CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE, 2024, 11 (01)
  • [24] Microplastics and Their Effect in Horticultural Crops: Food Safety and Plant Stress
    Silva, Gilda Carrasco
    Galleguillos Madrid, Felipe M.
    Hernandez, Diogenes
    Pincheira, Gonzalo
    Peralta, Ana Karina
    Urrestarazu Gavilan, Miguel
    Vergara-Carmona, Victor
    Fuentes-Penailillo, Fernando
    AGRONOMY-BASEL, 2021, 11 (08):
  • [25] Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops
    Yang, Hua
    Fang, Rui
    Luo, Ling
    Yang, Wei
    Huang, Qiong
    Yang, Chunlin
    Hui, Wenkai
    Gong, Wei
    Wang, Jingyan
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [26] Phytohormones regulate the abiotic stress: An overview of physiological, biochemical, and molecular responses in horticultural crops
    Zheng, Yi
    Wang, Xiaonan
    Cui, Xin
    Wang, Kefeng
    Wang, Yong
    He, Yuhui
    FRONTIERS IN PLANT SCIENCE, 2023, 13
  • [27] Current understanding of boosting power of salicylic acid for abiotic stress tolerance in horticultural crops
    Altaf, Muhammad Ahsan
    Shahid, Rabia
    Lal, Priyanka
    Ahmad, Riaz
    Zulfiqar, Faisal
    Kumar, Awadhesh
    Hayat, Faisal
    Kumar, Ravinder
    Lal, Milan Kumar
    Naz, Safina
    Tiwari, Rahul Kumar
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 163 : 285 - 293
  • [28] Agroindustrial By-Products as a Source of Biostimulants Enhancing Responses to Abiotic Stress of Horticultural Crops
    Zuzunaga-Rosas, Javier
    Boscaiu, Monica
    Vicente, Oscar
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [29] Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review
    El-Saadony, Mohamed T.
    Saad, Ahmed M.
    Soliman, Soliman M.
    Salem, Heba M.
    Desoky, El-Sayed M.
    Babalghith, Ahmad O.
    El-Tahan, Amira M.
    Ibrahim, Omar M.
    Ebrahim, Alia A. M.
    Abd El-Mageed, Taia A.
    Elrys, Ahmed S.
    Elbadawi, Alaa A.
    El-Tarabily, Khaled A.
    AbuQamar, Synan F.
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [30] Role of Silica Nanoparticles in Abiotic and Biotic Stress Tolerance in Plants: A Review
    Wang, Lei
    Ning, Chuanchuan
    Pan, Taowen
    Cai, Kunzheng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)