Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions

被引:3
|
作者
Bai, Jianhui [1 ]
Lu, Peina [2 ]
Li, Feng [3 ]
Li, Lijun [1 ]
Yin, Qiang [3 ]
机构
[1] Inner Mongolia Agr Univ, Agr Coll, Hohhot 010018, Peoples R China
[2] Gansu Agr Univ, State Key Lab Aridland Crop Sci, Lanzhou 730070, Peoples R China
[3] Chinese Acad Agr Sci, Inst Grassland Res, Hohhot 010010, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 06期
基金
中国国家自然科学基金;
关键词
alkali stress; salt stress; metabolome; transcriptome; oat; GENE-EXPRESSION; SOLUBLE SUGAR; TOLERANCE; ACID; ARABIDOPSIS; RESPONSES; TOXICITY; IMPROVES; DROUGHT; GROWTH;
D O I
10.3390/agronomy13061441
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Plant growth and production are more severely inhibited by alkalinity than by salinity. However, the metabolites responsible for the reduced growth caused by alkalinity are largely unknown. Here, the Illumina RNA-Seq analysis and targeted metabolome were used to identify the differentially expressed genes and metabolites responding to salt and alkali stresses. The expression levels of eight genes related to photosynthesis and some genes related to chlorophyll synthesis decreased under alkali stress, whereas no changes were detected under salt stress, which may explain the observed lower level of photosynthetic rate in alkalinity than in salinity. Under alkali stress, significant decreases in the relative abundances of cis-cinnamic acid and scopoline were observed, which correlated with the high levels of reactive oxygen species (ROS). The levels of protocatechuic acids decreased, correlating with the observed decrease in the chlorophyll content. Alkalinity markedly increased the production of o-coumaric acid, which contributes to growth inhibition. No significant changes in cis-cinnamic acid, scopoline, and o-coumaric acid were detected in salinity, which may be the reason for the stronger growth inhibition due to alkali stress than salt stress. The accumulation of citric acid, serotonin, pyroglutamic acid, L-citrulline, ferulic acid, and caffeic acid was detected under salt and alkali stress conditions, indicating high free radical scavenging capacity. The enhancement of mevalonic acid and salicylic acid levels was detected under alkali stress, which could have facilitated chlorophyll accumulation. Salt and alkali stress conditions also led to the accumulation of cyclic AMP related to inorganic ion regulation and betaine-related osmoregulation. Benzamide, phenethylamine, N-feruloyltyramine, chrysoeriol 6-C-hexoside, 1,3-o-di-p-coumaroyl glycerol, cordycepin, and 1-o-p-cumaroylglycerol were identified to be accumulated in response to alkali stress.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco
    Jiao, Fangchan
    Zhao, Lu
    Wu, Xingfu
    Song, Zhongbang
    Li, Yongping
    BMC GENOMICS, 2020, 21 (01)
  • [22] Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco
    Fangchan Jiao
    Lu Zhao
    Xingfu Wu
    Zhongbang Song
    Yongping Li
    BMC Genomics, 21
  • [23] Transcriptome and Metabolome Analyses Reveal Mechanisms Underlying the Response of Quinoa Seedlings to Nitrogen Fertilizers
    Li, Hanxue
    Wang, Qianchao
    Huang, Tingzhi
    Liu, Junna
    Zhang, Ping
    Li, Li
    Xie, Heng
    Wang, Hongxin
    Liu, Chenghong
    Qin, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (14)
  • [24] Combined transcriptome and metabolome analyses reveal the mechanisms of ultrasonication improvement of brown rice germination
    Zhang, Guangchen
    Xu, Jiaxin
    Wang, Yiqiao
    Sun, Xue
    Huang, Shaosong
    Huang, Lihua
    Liu, Youhong
    Liu, He
    Sun, Jian
    ULTRASONICS SONOCHEMISTRY, 2022, 91
  • [25] Metabolome and Whole-Transcriptome Analyses Reveal the Molecular Mechanisms Underlying Hypoglycemic Nutrient Metabolites Biosynthesis in Cyclocarya paliurus Leaves During Different Harvest Stages
    Zheng, Xuehai
    Xiao, Huibao
    Chen, Jiannan
    Zhu, Jinmao
    Fu, Yajuan
    Ouyang, Songying
    Chen, Youqiang
    Chen, Duo
    Su, Jingqian
    Xue, Ting
    FRONTIERS IN NUTRITION, 2022, 9
  • [26] Transcriptome and Metabolome Analyses Reveal Potential Salt Tolerance Mechanisms Contributing to Maintenance of Water Balance by the Halophytic Grass Puccinellia nuttalliana
    Vaziriyeganeh, Maryamsadat
    Khan, Shanjida
    Zwiazek, Janusz J.
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [27] Transcriptome and targeted hormone metabolome reveal the molecular mechanisms of flower abscission in camellia
    Cai, Yanfei
    Meng, Jing
    Cui, Yinshan
    Tian, Min
    Shi, Ziming
    Wang, Jihua
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [28] Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice
    Yinxiao Wang
    Liyu Huang
    Fengping Du
    Juan Wang
    Xiuqin Zhao
    Zhikang Li
    Wensheng Wang
    Jianlong Xu
    Binying Fu
    Scientific Reports, 11
  • [29] Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice
    Wang, Yinxiao
    Huang, Liyu
    Du, Fengping
    Wang, Juan
    Zhao, Xiuqin
    Li, Zhikang
    Wang, Wensheng
    Xu, Jianlong
    Fu, Binying
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [30] Metabolome and transcriptome analyses reveal the molecular mechanisms of LcMYB1 regulating anthocyanin accumulation in litchi hairy roots
    Li, Sha
    Qin, Yaqi
    Jing, Shiqi
    Wang, Dan
    Zhang, Zhike
    Qin, Yonghua
    Hu, Guibing
    Zhao, Jietang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 200