An explicit computation of the Hecke operator and the ghost conjecture

被引:0
|
作者
Truong, Nha Xuan [1 ]
机构
[1] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
关键词
Slope of UP operators; Overconvergent modular forms; Ghost conjecture; Gouvea's conjecture; EIGENCURVE; BOUNDARY;
D O I
10.1007/s40993-023-00447-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the Hecke operator at p = 5 and show that the upper minors of the matrix have non zero corank and, interestingly, follow the same ghost pattern in the ghost conjecture of Bergdall and Pollack. Due to this facts, we conjecture that the slope of Hecke action in this case can be computed using an appropriate variant of ghost series. Assume this result, we achieve an upper bound for the slopes that is similar to the Gouvea's (k - 1)/(p + 1) conjecture.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Computation of the Infimum in the Littlewood Conjecture
    Badziahin, Dzmitry
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 100 - 105
  • [32] SLOPES OF MODULAR FORMS AND THE GHOST CONJECTURE, II
    Bergdall, John
    Pollack, Robert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) : 357 - 388
  • [33] A Local Analogue of the Ghost Conjecture of Bergdall–Pollack
    Ruochuan Liu
    Nha Xuan Truong
    Liang Xiao
    Bin Zhao
    Peking Mathematical Journal, 2024, 7 (1) : 247 - 344
  • [34] Explicit Hecke series for symplectic group of genus 4
    Vankov, Kirill
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (01): : 279 - 298
  • [35] Explicit action of Hecke operators on Siegel modular forms
    Hafner, JL
    Walling, LH
    JOURNAL OF NUMBER THEORY, 2002, 93 (01) : 34 - 57
  • [36] Explicit formulas for Dirichlet and Hecke L-functions
    Li, XJ
    ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (02) : 491 - 503
  • [37] Nonvanishing of Hecke L-functions and the Bloch–Kato conjecture
    Byoung Du Kim
    Riad Masri
    Tong Hai Yang
    Mathematische Annalen, 2011, 349 : 301 - 343
  • [38] THE EXPLICIT MORDELL CONJECTURE FOR FAMILIES OF CURVES
    Checcoli, Sara
    Veneziano, Francesco
    Viada, Evelina
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [39] On the Bloch-Kato conjecture for Hecke L-functions
    Guo, L
    JOURNAL OF NUMBER THEORY, 1996, 57 (02) : 340 - 365
  • [40] Explicit counterexamples to Schaffer's conjecture
    Szehr, Oleg
    Zarouf, Rachid
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 146 : 1 - 30