Sharp bounds for the lemniscatic mean by the weighted Holder mean

被引:4
|
作者
Zhao, Tie-hong [1 ]
Wang, Miao-kun [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lemniscate functions; Lemniscatic mean; Weighted Holder mean; Gaussian hypergeometric function; TRANSFORMATION INEQUALITIES; MONOTONICITY; WILKER;
D O I
10.1007/s13398-023-01429-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with Gauss arc lemniscate functions and the lemniscatic mean LM(x, y). It has been proved in [Neuman (Math Pannon 18(1): 77-94, 2007), Lemma 4.1] that the double inequality x(3/5) y(2/5) < LM(x, y) < 3x + 2y/5 holds for x, y > 0 with x not equal y. This can be extended to approximate the lemniscatic mean by the weighted Holder mean. As applications, several new bounds for the arc lemniscate functions are also derived, which improve some previously known results.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Sharp bounds for the lemniscatic mean by the weighted Hölder mean
    Tie-hong Zhao
    Miao-kun Wang
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [2] SHARP WEIGHTED HOLDER MEAN BOUNDS FOR SEIFFERT'S MEANS
    Zhao, Tie-Hong
    Wang, Miao-Kun
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 327 - 345
  • [3] Sharp weighted Holder mean bounds for the complete elliptic integral of the second kind
    Wang, Miao-Kun
    He, Zai-Yin
    Zhao, Tie-Hong
    Bao, Qi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (07) : 537 - 551
  • [4] Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
    Hui-Zuo Xu
    Wei-Mao Qian
    Yu-Ming Chu
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [5] Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means
    Xu, Hui-Zuo
    Qian, Wei-Mao
    Chu, Yu-Ming
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [6] Sharp Bounds for the Weighted Holder Mean of the Zero-Balanced Generalized Complete Elliptic Integrals
    Zhao, Tie-Hong
    He, Zai-Yin
    Chu, Yu-Ming
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2021, 21 (03) : 413 - 426
  • [7] SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN
    Yang, Zhen-Hang
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 499 - 511
  • [8] Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and Harmonic Means
    Qian, Wei-Mao
    Long, Bo-Yong
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [9] Sharp power mean bounds for Seiffert mean
    Li Yong-min
    Wang Miao-kun
    Chu Yu-ming
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (01): : 101 - 107
  • [10] Sharp power mean bounds for Seiffert mean
    LI Yong-min
    WANG Miao-kun
    CHU Yu-ming
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2014, (01) : 101 - 107