Metallic slurry preparation and printability assessment for material extrusion additive manufacturing

被引:0
|
作者
Li, Z. [1 ,2 ,3 ,5 ]
Hu, X. G. [1 ,2 ]
Zhou, Y. [1 ,2 ]
Qu, W. Y. [4 ]
Wen, L. J.
Meng, X. X. [1 ,2 ]
Xu, Z. [1 ,2 ]
Guo, C. [2 ]
Lu, H. X. [1 ,2 ]
Zhu, Q. [1 ,2 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Key Lab Addit Mfg High performance Mat, Shenzhen 518055, Peoples R China
[3] Univ Surrey, Dept Mech Engn Sci, Guildford GU2 7XH, Surrey, England
[4] BYD Auto Ind Co Ltd, Shenzhen 518118, Peoples R China
[5] Polytech Univ Milan, Dept Mech Engn, I-20156 Milan, Italy
来源
基金
中国国家自然科学基金;
关键词
Material extrusion additive manufacturing; Semi-solid processing; Microstructure; Printability; RHEOLOGICAL BEHAVIOR; ALUMINUM-ALLOYS; EVOLUTION; FABRICATION; FRACTION;
D O I
10.1016/j.addlet.2023.100189
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Material extrusion additive manufacturing of thermoplastics is so advanced due to the tunable rheological properties and hence a suitable printability, which is deficient for metals. Even though semi-solid modification and binder indirect modification are used to realize metal extrusion printing, the uncontrollable flow behavior and the metallurgical defects make it challenging to bridge this gap. In this study, mixed powder remelting and printability assessment were first proposed for producing metallic slurry with pre-designed microstructure and suitable printability without adding fillers or polymer carriers. Specifically, the hypoeutectic Sn-Bi metallic slurry was obtained by remelting the mixed powder composed of SnBi58 powder and pure Sn powder. The micro structural characteristics at different temperatures were investigated, demonstrating the ability of microstructure predesign. Furthermore, the printability, including stability, extrudability, and buildability, was evaluated by an advanced rheometer. The combined slurry preparation and printability assessment provides a reliable method for parameters improvement to obtain the structural fidelity.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Polyvinylidene fluoride (PVDF) as a feedstock for material extrusion additive manufacturing
    Momenzadeh, Niknam
    Miyanaji, Hadi
    Porter, Daniel Allen
    Berfield, Thomas Austin
    RAPID PROTOTYPING JOURNAL, 2020, 26 (01) : 156 - 163
  • [32] Rheological approach for an additive manufacturing printer based on material extrusion
    Sanchez, Larissa Cristina
    Goncalves Beatrice, Cesar Augusto
    Lotti, Cybele
    Marini, Juliano
    Prado Bettini, Silvia Helena
    Costa, Lidiane Cristina
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 105 (5-6): : 2403 - 2414
  • [33] Material extrusion additive manufacturing of low-viscosity metallic feedstocks: Performances of the plunger-based approach
    Miclette, Olivier
    Cote, Raphael
    Demers, Vincent
    Brailovski, Vladimir
    ADDITIVE MANUFACTURING, 2022, 60
  • [34] The importance of rheological behavior in the additive manufacturing technique material extrusion
    Mackay, Michael E.
    JOURNAL OF RHEOLOGY, 2018, 62 (06) : 1549 - 1561
  • [35] Fused Extrusion Material Additive Manufacturing for Mg/PCL Composites
    Liu Y.
    Liu Y.
    Wu Y.
    Chen R.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (02): : 70 - 79
  • [36] A heterogeneous pore design algorithm for material extrusion additive manufacturing
    Qu, Huawei
    Liu, Kaizheng
    Liu, Juan
    Gao, Chongjian
    Ruan, Changshun
    ADDITIVE MANUFACTURING, 2024, 94
  • [37] Rheological approach for an additive manufacturing printer based on material extrusion
    Larissa Cristina Sanchez
    Cesar Augusto Gonçalves Beatrice
    Cybele Lotti
    Juliano Marini
    Sílvia Helena Prado Bettini
    Lidiane Cristina Costa
    The International Journal of Advanced Manufacturing Technology, 2019, 105 : 2403 - 2414
  • [38] Numerical simulations of the mesostructure formation in material extrusion additive manufacturing
    Serdeczny, Marcin P.
    Comminal, Raphael
    Pedersen, David B.
    Spangenberg, Jon
    ADDITIVE MANUFACTURING, 2019, 28 : 419 - 429
  • [39] Material Extrusion Additive Manufacturing of Wood and Lignocellulosic Filled Composites
    Lamm, Meghan E.
    Wang, Lu
    Kishore, Vidya
    Tekinalp, Halil
    Kunc, Vlastimil
    Wang, Jinwu
    Gardner, Douglas J.
    Ozcan, Soydan
    POLYMERS, 2020, 12 (09)
  • [40] Stability and deformations of deposited layers in material extrusion additive manufacturing
    Mollah, Md Tusher
    Comminal, Raphael
    Serdeczny, Marcin P.
    Pedersen, David B.
    Spangenberg, Jon
    ADDITIVE MANUFACTURING, 2021, 46