Pathways to achieve carbon emission peak and carbon neutrality by 2060: A case study in the Beijing-Tianjin-Hebei region, China

被引:16
|
作者
Zhan, Jinyan [1 ]
Wang, Chao [2 ]
Wang, Huihui [1 ]
Zhang, Fan [3 ,4 ]
Li, Zhihui [3 ,4 ]
机构
[1] Beijing Normal Univ, Sch Environm, State Key Lab Water Environm Simulat, Beijing 100875, Peoples R China
[2] Capital Univ Econ & Business, Sch Lab Econ, Beijing 100070, Peoples R China
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Key Lab Land Surface Pattern & Simulat, Beijing 100101, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Carbon emissions; Carbon sequestration; Scenario analysis; System dynamic; Beijing-Tianjin-Hebei; ENERGY-CONSUMPTION; SCENARIO ANALYSIS; CO2; EMISSIONS; SEQUESTRATION; DECOMPOSITION; MODEL;
D O I
10.1016/j.rser.2023.113955
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global climate change, rapid urbanization, and drastic economic development pose many threats and challenges to humanity, increasing the need for sustainable development, urban ecological management, and low-carbon transformations. Comprehensive simulation models rarely involve all the aspects of carbon emissions, carbon sequestration, population, economic, and energy sections. Firstly, this study evaluated the changes of the carbon neutrality rate in the Beijing-Tianjin-Hebei (BTH) region from 2000 to 2019. Then, a Carbon Neutrality Simulation Model (CNSM) was built using system dynamics. Finally, an optimal development scenario and pathways were identified for the BTH region based on scenario analysis. The results revealed that: (1) Carbon emissions first increased rapidly and then stabilized, carbon sequestration did not significantly change, and carbon neutrality rate decreased. (2) The baseline scenario (S1) did not reach the "dual carbon" target with carbon emissions increasing to 832.62 Mt in 2030 and 914.26 Mt in 2060, whereas the carbon neutrality rate increased to 17.96 % in 2030 and 22.69 % in 2060. (3) Among the single-factor scenarios (S2-S7), the industrial restructuring scenario (S3) had the greatest carbon reduction potential, reaching the carbon peak target. (4) Among the multi-factor scenarios, all the three baseline economic scenarios (S8-S10) reached carbon peak target in 2043, 2029, and 2022. The high constraint scenario (S10) reached the carbon neutrality target, as the optimal development scenario for the BTH region. All the results provide scientific evidences to achieve carbon neutrality target and regional sustainable development.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] Study on Environmental Equity in Beijing-Tianjin-Hebei Region
    Li, Cui
    2020 5TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND ENVIRONMENTAL PROTECTION, 2020, 621
  • [32] Comparative study on the influence of final use structure on carbon emissions in the Beijing-Tianjin-Hebei region
    Fan, Jing-Li
    Cao, Zhe
    Zhang, Xian
    Wang, Jian-Da
    Zhang, Mian
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 668 : 271 - 282
  • [33] Analysis of urban carbon balance based on land use dynamics in the Beijing-Tianjin-Hebei region, China
    Wang, Chao
    Zhan, Jinyan
    Zhang, Fan
    Liu, Wei
    Twumasi-Ankrah, Micheal Jordan
    JOURNAL OF CLEANER PRODUCTION, 2021, 281
  • [34] Structural decomposition analysis of carbon emissions from residential consumption in the Beijing-Tianjin-Hebei region, China
    Wang, Chao
    Zhan, Jinyan
    Li, Zhihui
    Zhang, Fan
    Zhang, Yue
    JOURNAL OF CLEANER PRODUCTION, 2019, 208 : 1357 - 1364
  • [35] Characteristics of haze pollution in Beijing-Tianjin-Hebei region of China
    Xiang, Nan
    Xu, Feng
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON CIVIL, TRANSPORTATION AND ENVIRONMENT, 2016, 78 : 946 - 949
  • [36] Efficiency measurement and inefficiency analysis of low-carbon logistics in the Beijing-Tianjin-Hebei region, China
    Yao, Di
    Wang, Jinmei
    Guo, Yuqing
    Qiu, Ying
    HELIYON, 2024, 10 (09)
  • [37] Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China
    Guo, Xiurui
    Fu, Liwei
    Ji, Muse
    Lang, Jianlei
    Chen, Dongsheng
    Cheng, Shuiyuan
    ENVIRONMENTAL POLLUTION, 2016, 216 : 470 - 479
  • [38] URBANIZATION STRATEGY IN CHINA AND DEVELOPMENT OF THE REGION BEIJING-TIANJIN-HEBEI
    Bazhenova, E. S.
    70 LYET SOVRYEMYENNOMOO KITAYSKOMOO GOSOODARSTVOO, 2019, : 171 - +
  • [39] Microbial aerosol in Beijing-Tianjin-Hebei region of Eastern China
    Zhang, Jianling
    Huang, Shuxian
    Tian, Mengyao
    Wu, Xuerun
    Samaiti, Dilimulati
    Haheerman, Amanti
    Dong, Fuguang
    Xiong, Hui
    Jiang, Ru
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2017, 61 (02) : 89 - 97
  • [40] Integrated assessment of cleaning air policy in China: A case study for Beijing-Tianjin-Hebei region
    Xu, Meng
    Qin, Zhongfeng
    Zhang, Shaohui
    JOURNAL OF CLEANER PRODUCTION, 2021, 296