DISTRIBUTED SPARSE COMPOSITE QUANTILE REGRESSION IN ULTRAHIGH DIMENSIONS

被引:3
|
作者
Chen, Canyi [1 ]
Gu, Yuwen [2 ]
Zou, Hui [3 ]
Zhu, Liping [4 ,5 ]
机构
[1] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[4] Renmin Univ China, Inst Stat & Big Data, Beijing 100872, Peoples R China
[5] Renmin Univ China, Ctr Appl Stat, Beijing 100872, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Composite quantile regression; distributed estimation; ef-ficiency; heavy-tailed noise; support recovery; VARIABLE SELECTION; FRAMEWORK; EFFICIENT;
D O I
10.5705/ss.202022.0095
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We examine distributed estimation and support recovery for ultrahigh dimensional linear regression models under a potentially arbitrary noise distribution. The composite quantile regression is an efficient alternative to the least squares method, and provides robustness against heavy-tailed noise while maintaining reasonable efficiency in the case of light-tailed noise. The highly nonsmooth nature of the composite quantile regression loss poses challenges to both the theoretical and the computational development in an ultrahigh-dimensional distributed estimation setting. Thus, we cast the composite quantile regression into the least squares framework, and propose a distributed algorithm based on an approximate Newton method. This algorithm is efficient in terms of both computation and communication, and requires only gradient information to be communicated between the machines. We show that the resultant distributed estimator attains a near-oracle rate after a constant number of communications, and provide theoretical guarantees for its estimation and support recovery accuracy. Extensive experiments demonstrate the competitive empirical performance of our algorithm.
引用
收藏
页码:1143 / 1167
页数:25
相关论文
共 50 条
  • [31] Adaptive distributed smooth composite quantile regression estimation for large-scale data
    Wang, Kangning
    Zhang, Jingyu
    Sun, Xiaofei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2025, 204
  • [32] Semiparametric Hierarchical Composite Quantile Regression
    Chen, Yanliang
    Tang, Man-Lai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (05) : 996 - 1012
  • [33] Composite Hierachical Linear Quantile Regression
    Yanliang CHEN
    Maozai TIAN
    Keming YU
    Jianxin PAN
    Acta Mathematicae Applicatae Sinica(English Series), 2014, 30 (01) : 49 - 64
  • [34] Acceleration in Distributed Sparse Regression
    Maros, Marie
    Scutari, Gesualdo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [35] A note on the efficiency of composite quantile regression
    Zhao, Kaifeng
    Lian, Heng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (07) : 1334 - 1341
  • [36] Distributed Sparse Linear Regression
    Mateos, Gonzalo
    Bazerque, Juan Andres
    Giannakis, Georgios B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) : 5262 - 5276
  • [37] Bayesian composite Tobit quantile regression
    Alhusseini, Fadel Hamid Hadi
    Georgescu, Vasile
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (04) : 727 - 739
  • [38] Bayesian Analysis of Composite Quantile Regression
    Alhamzawi R.
    Statistics in Biosciences, 2016, 8 (2) : 358 - 373
  • [39] Composite quantile regression for massive datasets
    Jiang, Rong
    Hu, Xueping
    Yu, Keming
    Qian, Weimin
    STATISTICS, 2018, 52 (05) : 980 - 1004
  • [40] Composite hierachical linear quantile regression
    Yan-liang Chen
    Mao-zai Tian
    Ke-ming Yu
    Jian-xin Pan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 49 - 64