Bifunctional fluoropyridinium-based cationic electrolyte additive for dendrite-free Li metal anode

被引:7
|
作者
Peng, Kunyao [1 ]
Tang, Pei [1 ]
Yao, Qianqian [1 ]
Dou, Qingyun [1 ]
Yan, Xingbin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Mat Sci & Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
lithium metal anode; electrolyte additive; solid electrolyte interphase (SEI); electrostatic repulsion; lithium metal battery (LMB); BASIS-SET; LITHIUM; DEPOSITION;
D O I
10.1007/s12274-023-5761-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although lithium metal has become a promising anode material for high-energy batteries owing to its high specific capacity and the lowest reduction potential, the continuous side reactions with electrolyte as well as the safety problem caused by Li dendrite growth restrict Li anode's practical application. Herein, we demonstrate that N-fluoropyridinium (ArF+) bis(trifluoromethane)sulfonimide (TFSI-) as an electrolyte additive can protect the lithium metal by both solid electrolyte interphase (SEI) protection and electrostatic repulsion mechanisms. The ArF+ cations not only participate in forming F, N-containing SEI protective layer on Li surface, but also act as a cationic repellent during Li deposition to inhibit Li dendrite growth. As a result, the cycle performance of Li symmetric cells and Li parallel to LiFePO4 full cells were significantly improved by using ArFTFSI-added electrolyte. This study provides an electrolyte additive strategy for Li anode realizing SEI protection and electrostatic repulsion simultaneously.
引用
收藏
页码:9530 / 9537
页数:8
相关论文
共 50 条
  • [31] Homogenous charge distribution by free-standing porous structure for dendrite-free Li metal anode
    Danmiao Kang
    Kun Tang
    Joonho Koh
    Wenbin Liang
    John P.Lemmon
    Journal of Energy Chemistry, 2020, 44 (05) : 68 - 72
  • [32] An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte
    Zhang, Yuanjun
    Zhu, Ming
    Wu, Kuan
    Yu, Fangfang
    Wang, Guanyao
    Xu, Gang
    Wu, Minghong
    Liu, Hua-Kun
    Dou, Shi-Xue
    Wu, Chao
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (07) : 4253 - 4261
  • [33] Prospects for Dendrite-Free Cycling of Li Metal Batteries
    Chen, Qing
    Geng, Ke
    Sieradzki, K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : A2004 - A2007
  • [34] Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode
    Zhao, Yao
    Hao, Shuaiguo
    Su, Li
    Ma, Zhipeng
    Shao, Guangjie
    Chemical Engineering Journal, 2021, 392
  • [35] Hierarchical Cu fibers induced Li uniform nucleation for dendrite-free lithium metal anode
    Zhao, Yao
    Hao, Shuaiguo
    Su, Li
    Ma, Zhipeng
    Shao, Guangjie
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [36] Dendrite-free zinc anode enabled by Buffer-like additive via strong cationic specific absorption
    Zhao, Ziwei
    Li, Pengcheng
    Zhang, Zhiqing
    Zhang, Hao
    Li, Ge
    CHEMICAL ENGINEERING JOURNAL, 2023, 454
  • [37] Guided dendrite-free lithium deposition through titanium nitride additive in Li metal batteries
    Gao, Chunhui
    Sun, Kena
    Hong, Bo
    Zhang, Kai
    Zhang, Zhian
    Lai, Yanqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (53) : 28294 - 28302
  • [38] A gradient topology host for a dendrite-free lithium metal anode
    Sun, Bing
    Zhang, Qin
    Xu, Wenli
    Zhao, Rong
    Zhu, Hui
    Lv, Wei
    Li, Xuanke
    Yang, Nianjun
    NANO ENERGY, 2022, 94
  • [39] A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode
    Li, Yifeng
    Zhao, Danyang
    Cheng, Jiajun
    Lei, Yu
    Zhang, Zisheng
    Zhang, Wenming
    Zhu, Qiancheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [40] Dendrite-Free Solid-State Li Metal Batteries Enabled by Bifunctional Polymer Gel Electrolytes
    Wu, Qian
    Yang, Yun
    Chen, Zheng
    Su, Qinting
    Huang, Songde
    Song, Dakun
    Zhu, Caizhen
    Ma, Rui
    Li, Cuihua
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) : 9420 - 9430