Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering

被引:8
|
作者
Gao, Jianpeng [1 ,2 ]
Liu, Xiao [1 ,2 ]
Cheng, Junyao [1 ,2 ]
Deng, Junhao [1 ]
Han, Zhenchuan [1 ]
Li, Ming [1 ]
Wang, Xiumei [3 ]
Liu, Jianheng [1 ]
Zhang, Licheng [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Orthopaed, Beijing 100036, Peoples R China
[2] Chinese PLA Med Sch, Beijing 100036, Peoples R China
[3] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Key Lab Adv Mat Minist Educ, Beijing 100084, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
photocrosslinkable hydrogels; photolithography 3D bioprinting; bone tissue engineering; bone regeneration; bone defect; BIOMEDICAL APPLICATIONS; GELATIN; SCAFFOLDS; BIOMATERIALS; STEREOLITHOGRAPHY; REGENERATION; CONSTRUCTS; STRATEGIES; MICELLES; PROPERTY;
D O I
10.1093/rb/rbad037
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Bone tissue engineering (BTE) has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders. Photocrosslinkable hydrogels (PCHs) with good biocompatibility and biodegradability can significantly promote the migration, proliferation and differentiation of cells and have been widely used in BTE. Moreover, photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone, meeting the structural requirements of bone regeneration. Nanomaterials, cells, drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE. In this review, we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE. Finally, the challenges and potential future approaches for bone defects are outlined.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [21] 3D Bioprinting Technology and Hydrogels Used in the Process
    Lima, Tainara de P. L.
    Canelas, Caio Augusto d. A.
    Concha, Viktor O. C.
    Costa, Fernando A. M. da
    Passos, Marcele F.
    JOURNAL OF FUNCTIONAL BIOMATERIALS, 2022, 13 (04)
  • [22] Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications
    Ding Y.-W.
    Zhang X.-W.
    Mi C.-H.
    Qi X.-Y.
    Zhou J.
    Wei D.-X.
    Smart Materials in Medicine, 2023, 4 : 59 - 68
  • [23] Advances in Photocrosslinkable Materials for 3D Bioprinting
    Zhang, Wen
    Ye, Wenbo
    Yan, Yunfeng
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (01)
  • [24] 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering
    Zhou Jian
    Tian Zhuang
    Tian Qinyu
    Peng Liqing
    Li Kun
    Luo Xujiang
    Wang Diaodiao
    Yang Zhen
    Jiang Shuangpeng
    Sui Xiang
    Huang Jingxiang
    Liu Shuyun
    Hao Libo
    Tang Peifu
    Yao Qi
    Guo Quany
    BIOACTIVE MATERIALS, 2021, 6 (06) : 1711 - 1726
  • [25] 3D bioprinting of photocrosslinkable hydrogel constructs
    Pereira, Ruben F.
    Bartolo, Paulo J.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (48)
  • [26] 3D Bioprinting Technology in Biochemical Engineering
    Eom, Tae Yoon
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2016, 54 (03): : 285 - 292
  • [27] Tissue engineering by decellularization and 3D bioprinting
    Garreta, Elena
    Oria, Roger
    Tarantino, Carolina
    Pla-Roca, Mateu
    Prado, Patricia
    Fernandez-Aviles, Francisco
    Maria Campistol, Josep
    Samitier, Josep
    Montserrat, Nuria
    MATERIALS TODAY, 2017, 20 (04) : 166 - 178
  • [28] Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges
    Fang, Wenzhuo
    Yang, Ming
    Wang, Liyang
    Li, Wenyao
    Liu, Meng
    Jin, Yangwang
    Wang, Yuhui
    Yang, Ranxing
    Wang, Ying
    Zhang, Kaile
    Fu, Qiang
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (05) : 207 - 238
  • [29] 3D bioprinting in cardiac tissue engineering
    Wang, Zihan
    Wang, Ling
    Li, Ting
    Liu, Sitian
    Guo, Baolin
    Huang, Wenhua
    Wu, Yaobin
    THERANOSTICS, 2021, 11 (16): : 7948 - 7969
  • [30] 3D bioprinting of dual-crosslinked nanocellulose hydrogels for tissue engineering applications
    Monfared, Marzieh
    Mawad, Damia
    Rnjak-Kovacina, Jelena
    Stenzel, Martina H.
    JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (31) : 6163 - 6175