Automation of the Micronucleus Assay Using Imaging Flow Cytometry and Artificial Intelligence

被引:4
|
作者
Rodrigues, Matthew A. [1 ]
Mendoza, Maria Gracia Garcia [1 ]
Kong, Raymond [1 ]
Sutton, Alexandra [1 ]
Pugsley, Haley R. [1 ]
Li, Yang [1 ]
Hall, Brian E. [1 ]
Fogg, Darin [1 ]
Ohl, Lars [1 ]
Venkatachalam, Vidya [1 ]
机构
[1] Luminex Corp, Amnis Flow Cytometry, Austin, TX 78727 USA
来源
关键词
VALIDATION;
D O I
10.3791/64549
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The micronucleus (MN) assay is used worldwide by regulatory bodies to evaluate chemicals for genetic toxicity. The assay can be performed in two ways: by scoring MN in once-divided, cytokinesis-blocked binucleated cells or fully divided mononucleated cells. Historically, light microscopy has been the gold standard method to score the assay, but it is laborious and subjective. Flow cytometry has been used in recent years to score the assay, but is limited by the inability to visually confirm key aspects of cellular imagery. Imaging flow cytometry (IFC) combines high-throughput image capture and automated image analysis, and has been successfully applied to rapidly acquire imagery of and score all key events in the MN assay. Recently, it has been demonstrated that artificial intelligence (AI) methods based on convolutional neural networks can be used to score MN assay data acquired by IFC. This paper describes all steps to use AI software to create a deep learning model to score all key events and to apply this model to automatically score additional data. Results from the AI deep learning model compare well to manual microscopy, therefore enabling fully automated scoring of the MN assay by combining IFC and AI.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
    Wills, John W.
    Verma, Jatin R.
    Rees, Benjamin J.
    Harte, Danielle S. G.
    Haxhiraj, Qiellor
    Barnes, Claire M.
    Barnes, Rachel
    Rodrigues, Matthew A.
    Minh Doan
    Filby, Andrew
    Hewitt, Rachel E.
    Thornton, Catherine A.
    Cronin, James G.
    Kenny, Julia D.
    Buckley, Ruby
    Lynch, Anthony M.
    Carpenter, Anne E.
    Summers, Huw D.
    Johnson, George E.
    Rees, Paul
    ARCHIVES OF TOXICOLOGY, 2021, 95 (09) : 3101 - 3115
  • [2] Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
    John W. Wills
    Jatin R. Verma
    Benjamin J. Rees
    Danielle S. G. Harte
    Qiellor Haxhiraj
    Claire M. Barnes
    Rachel Barnes
    Matthew A. Rodrigues
    Minh Doan
    Andrew Filby
    Rachel E. Hewitt
    Catherine A. Thornton
    James G. Cronin
    Julia D. Kenny
    Ruby Buckley
    Anthony M. Lynch
    Anne E. Carpenter
    Huw D. Summers
    George E. Johnson
    Paul Rees
    Archives of Toxicology, 2021, 95 : 3101 - 3115
  • [3] A multi-biomarker micronucleus assay using imaging flow cytometry
    Harte, Danielle S. G.
    Lynch, Anthony M.
    Verma, Jatin
    Rees, Paul
    Filby, Andrew
    Wills, John W.
    Johnson, George E.
    ARCHIVES OF TOXICOLOGY, 2024, 98 (09) : 3137 - 3153
  • [4] The in vitro micronucleus assay using imaging flow cytometry and deep learning
    Matthew A. Rodrigues
    Christine E. Probst
    Artiom Zayats
    Bryan Davidson
    Michael Riedel
    Yang Li
    Vidya Venkatachalam
    npj Systems Biology and Applications, 7
  • [5] The in vitro micronucleus assay using imaging flow cytometry and deep learning
    Rodrigues, Matthew A.
    Probst, Christine E.
    Zayats, Artiom
    Davidson, Bryan
    Riedel, Michael
    Li, Yang
    Venkatachalam, Vidya
    NPJ SYSTEMS BIOLOGY AND APPLICATIONS, 2021, 7 (01)
  • [6] A Multi-Biomarker Micronucleus Assay Using Imaging Flow Cytometry
    Harte, Danielle S. G.
    Lynch, Anthony M.
    Rees, Paul
    Wills, John W.
    Johnson, George E.
    ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2022, 63 : 74 - 75
  • [7] Automation of the in vitro micronucleus assay using the Imagestream® imaging flow cytometer
    Rodrigues, Matthew A.
    CYTOMETRY PART A, 2018, 93A (07) : 706 - 726
  • [8] Artificial intelligence in imaging flow cytometry
    Pozzi, Paolo
    Candeo, Alessia
    Paie, Petra
    Bragheri, Francesca
    Bassi, Andrea
    FRONTIERS IN BIOINFORMATICS, 2023, 3
  • [9] Laser scanning cytometry for automation of the micronucleus assay
    Darzynkiewicz, Zbigniew
    Smolewski, Piotr
    Holden, Elena
    Luther, Ed
    Henriksen, Mel
    Francois, Maxime
    Leifert, Wayne
    Fenech, Michael
    MUTAGENESIS, 2011, 26 (01) : 153 - 161
  • [10] Automation of the Buccal Micronucleus Cytome Assay Using Laser Scanning Cytometry
    Leifert, Wayne R.
    Francois, Maxime
    Thomas, Philip
    Luther, Ed
    Holden, Elena
    Fenech, Michael
    RECENT ADVANCES IN CYTOMETRY, PART A: INSTRUMENTATION, METHODS, FIFTH EDITION, 2011, 102 : 321 - 339