Biomass derived metal free hierarchical porous activated carbon for efficient oxygen evolution reaction

被引:6
|
作者
Guchhait, Sujit Kumar [1 ]
Sutradhar, Debanjan [1 ,2 ]
Nandi, Rajib [1 ,2 ]
Sarma, Anil Kumar [1 ,3 ]
机构
[1] Sardar Swaran Singh Natl Inst Bioenergy, Electrochem Proc Div, Kapurthala, Punjab, India
[2] Dr BR Ambedkar Natl Inst Technol, Ctr Energy & Environm, Jalandhar, Punjab, India
[3] Sardar Swaran Singh Natl Inst Bioenergy, Electrochem Proc Div, Kapurthala 144603, India
关键词
Biomass; carbonization; porous-activated carbon; electrocatalyst; oxygen evolution reaction; HIGHLY EFFICIENT; RECENT PROGRESS; WATER; ELECTROCATALYST; REDUCTION; NITROGEN; CATALYSTS; ELECTRODE;
D O I
10.1080/15567036.2023.2209540
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of high electro-efficient and sustainable metal-free catalysts to replace noble materials is essential for the development of prospective renewable energy conversion and storage systems. Due to its ability to provide clean energy, the oxygen evolution reaction (OER) recently received a lot of interest. Here, we provide an effective "waste to clean energy" concept-based porous-activated carbon from waste rice husk with hierarchical pore architecture for OER. The physicochemical properties of the synthesized activated carbon material were examined by XRD, FESEM, and BET analysis. Characterization of the synthesized activated carbon derived from the rice husk shows a high BET surface area (755 m(2)/g) with high pore volume. Electro-catalytic performance of the prepared porous-activated carbon has been studied, viz. linear sweep voltammetry, Tafel slope, electrochemical impedance spectroscopy, and cyclic voltammetry in 1 M KOH solution. As an electrocatalytic performance in alkaline media, it shows low-onset potential (1.56 V vs. reversible hydrogen electrode), with a small Tafel slope (61 mV/dec), an overpotential (eta(10)) of 0.47 V, low Rct (212 omega), and good stability toward OER performance even after 500 cycles. Here, we have also reported the effect of electrochemically active surface area and mass activity effect on the OER performance.
引用
收藏
页码:5957 / 5969
页数:13
相关论文
共 50 条
  • [41] Co1-xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction
    He, Denghong
    Wu, Xiaolin
    Liu, Wei
    Lei, Chaojun
    Yu, Chunlin
    Zheng, Guokui
    Pan, Junjie
    Lei, Lecheng
    Zhang, Xingwang
    CHINESE CHEMICAL LETTERS, 2019, 30 (01) : 229 - 233
  • [42] Porous carbon framework derived from N-rich hypercrosslinked polymer as the efficient metal-free electrocatalyst for oxygen reduction reaction
    Yang, Zifeng
    Han, Jingxin
    Jiao, Rui
    Sun, Hanxue
    Zhu, Zhaoqi
    Liang, Weidong
    Li, An
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 557 : 664 - 672
  • [43] Coffee waste-derived porous carbon for hydrogen and oxygen evolution reaction
    Pandey, Keshab
    Jeong, Hae Kyung
    CHEMICAL PHYSICS IMPACT, 2023, 6
  • [44] Designing a Hierarchical Porous Carbon with Optimized Nitrogen Doping for Efficient Oxygen Reduction Reaction
    Peng, Xingkai
    Zhao, Xiaowei
    Hu, Yuekun
    Guo, Lingli
    Liu, Yan
    Yu, Xiaofei
    Yang, Xiaojing
    Zhang, Xinghua
    Lu, Zunming
    Li, Lanlan
    CHEMPLUSCHEM, 2023, 88 (07):
  • [45] Hierarchical Porous Carbon Doped with Iron/Nitrogen/Sulfur for Efficient Oxygen Reduction Reaction
    Kone, Issa
    Xie, Ao
    Tang, Yang
    Chen, Yu
    Liu, Jia
    Chen, Yongmei
    Sun, Yanzhi
    Yang, Xiaojin
    Wan, Pingyu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) : 20963 - 20973
  • [46] Porous Carbon Networks Derived From Graphitic Carbon Nitride for Efficient Oxygen Reduction Reaction
    Li, Chenxia
    Li, Xuesong
    Sun, Xiaojuan
    Zhang, Xueyu
    Duan, Lianfeng
    Yang, Xijia
    Wang, Liying
    Lu, Wei
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [47] Porous Carbon Networks Derived From Graphitic Carbon Nitride for Efficient Oxygen Reduction Reaction
    Chenxia Li
    Xuesong Li
    Xiaojuan Sun
    Xueyu Zhang
    Lianfeng Duan
    Xijia Yang
    Liying Wang
    Wei Lü
    Nanoscale Research Letters, 2019, 14
  • [48] Bimetallic metal-organic framework-derived carbon nanocubes as efficient electrocatalysts for oxygen evolution reaction
    Chen, Hongxu
    Lv, Enjun
    Ji, Qinghong
    Zou, Lijia
    Liu, Huajian
    Yong, Jiayi
    Gao, Junkuo
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 291
  • [49] A biomass derived nitrogen doped carbon fibers as efficient catalysts for the oxygen reduction reaction
    Liu, Anran
    Ma, Mengyao
    Zhang, Xiaoqin
    Ming, Jing
    Jiang, Ling
    Li, Ying
    Zhang, Yuanjian
    Liu, Songqin
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 824 : 60 - 66
  • [50] Nitrogen-Doped Porous Carbon Derived from Malachium Aquaticum Biomass as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction
    Huang, Hui
    Wei, Xianjun
    Gao, Shuyan
    ELECTROCHIMICA ACTA, 2016, 220 : 427 - 435