Anisotropic total generalized variation model for Poisson noise removal

被引:1
|
作者
Li, Daiqin [1 ]
Liu, Xinwu [2 ]
机构
[1] Hunan Police Acad, Dept Fundamental Courses, Changsha 410138, Hunan, Peoples R China
[2] Hunan Univ Sci & Technol, Sch Math & Computat Sci, Xiangtan 411201, Hunan, Peoples R China
关键词
Poisson noise; Anisotropic diffusion tensor; Total generalized variation; Alternating minimization method; Primal-dual algorithm; IMAGE;
D O I
10.1007/s11042-023-14359-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When removing Poisson noise, it is a challenging task to overcome the staircase effect and maintain edge details. To achieve this goal, this paper introduces an anisotropic diffusion tensor into the total generalized variation regularization, and proposes an improved variational model for Poisson noise suppression. The included anisotropic diffusion tensor helps to preserve the structural features of images while denoising. Computationally, we design an efficient alternating minimization method in detail to obtain the optimal solution by combining the classical primal-dual algorithm. Finally, in contrast with several popular regularization models, experimental results show that our denoising model has obvious advantages in staircase reduction and edge preservation. At the same time, our recovered results also have the lowest MSE and the highest PSNR, SSIM values.
引用
收藏
页码:19607 / 19620
页数:14
相关论文
共 50 条
  • [21] MTV: modified total variation model for image noise removal
    Wang, Y.
    Chen, W.
    Zhou, S.
    Yu, T.
    Zhang, Y.
    ELECTRONICS LETTERS, 2011, 47 (10) : 592 - 594
  • [22] Adaptive Bregmanized total variation model for mixed noise removal
    Li, Gen
    Huang, Xiang
    Li, Shuang-Gao
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 80 : 29 - 35
  • [23] WEIGHTED ANISOTROPIC - ISOTROPIC TOTAL VARIATION FOR POISSON DENOISING
    Bui, Kevin
    Lou, Yifei
    Park, Fredrick
    Xin, Jack
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1020 - 1024
  • [24] An adaptive spatial-spectral total variation approach for Poisson noise removal in hyperspectral images
    Mansouri, Alamin
    Deger, Ferdinand
    Pedersen, Marius
    Hardeberg, Jon Y.
    Voisin, Yvon
    SIGNAL IMAGE AND VIDEO PROCESSING, 2016, 10 (03) : 447 - 454
  • [25] Automatic regularization parameter selection by generalized cross-validation for total variational Poisson noise removal
    Zhang, Xiongjun
    Javidi, Bahram
    Ng, Michael K.
    APPLIED OPTICS, 2017, 56 (09) : D47 - D51
  • [26] Poisson Noise Removal Based on Nonlocal Total Variation with Euler’s Elastica Pre-processing
    刘红毅
    张峥嵘
    肖亮
    韦志辉
    Journal of Shanghai Jiaotong University(Science), 2017, (05) : 609 - 614
  • [27] Poisson noise removal based on nonlocal total variation with Euler’s elastica pre-processing
    Liu H.
    Zhang Z.
    Xiao L.
    Wei Z.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (5) : 609 - 614
  • [28] IMAGE NOISE REMOVAL BASED ON TOTAL VARIATION
    Thanh, D. N. H.
    Dvoenko, S. D.
    COMPUTER OPTICS, 2015, 39 (04) : 564 - 571
  • [29] An optimal bilevel optimization model for the generalized total variation and anisotropic tensor parameters selection
    Boutaayamou, Idriss
    Hadri, Aissam
    Laghrib, Amine
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 438
  • [30] Total Variation Based Parameter-Free Model for Impulse Noise Removal
    Sciacchitano, Federica
    Dong, Yiqiu
    Andersen, Martin S.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (01) : 186 - 204