Hybrid Physics-Based and Data-Driven Prognostic for PEM Fuel Cells Considering Voltage Recovery

被引:9
|
作者
Wu, Hangyu [1 ,2 ]
Wei, Wang [3 ]
Li, Yang [4 ]
Zhu, Wenchao [5 ,6 ]
Xie, Changjun [1 ,2 ]
Gooi, Hoay Beng [7 ]
机构
[1] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Sch Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[4] Dept Elect Engn, S-41296 Gothenburg, Sweden
[5] State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[6] Hubei Prov Key Lab Fuel Cells, Wuhan 430070, Peoples R China
[7] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Predictive models; Aging; Data models; Fuel cells; Degradation; Market research; Voltage; Fuel cell; aging prediction; hybrid method; voltage recovery; USEFUL LIFE PREDICTION; DEGRADATION PREDICTION; FILTER;
D O I
10.1109/TEC.2023.3311460
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Predicting the degradation behaviors is challenging and essential for prognostics and health management for proton exchange membrane fuel cells (PEMFCs). However, existing methods based on data-driven or model-based methods can face the problem of significant performance inconsistencies in different prediction stages. We investigate the cause and attribute it to the ignorance of the voltage recovery phenomena of PEMFCs observed during the frequent start-stop processes during practical applications. A novel prognostic method is proposed to provide a more comprehensive analysis of PEMFC aging that integrates data-driven and model-based methods. Specifically, a physics-based aging model considering voltage recovery (PA-VR) is first reported as a model-based method to enhance the prediction effect at voltage mutation points. Then, the moving window method with iterative function is used to combine the data-driven method with the PA-VR model, which realizes the online update of model parameters. Finally, the weightings on individual approaches are dynamically determined at different stages throughout the PEMFC lifecycle. The proposed hybrid method achieves an effective improvement in prediction performance by combining the overall degradation trend predicted by the PA-VR model and the local dynamic characteristics predicted by the data-driven method.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条
  • [21] A comparison of physics-based, data-driven, and hybrid modeling approaches for rice phenology prediction
    Yu, Jin
    Zhao, Yifan
    Lei, Guoqing
    Zeng, Wenzhi
    AGRONOMY JOURNAL, 2025, 117 (01)
  • [22] A Hybrid Physics-Based Data-Driven Framework for Anomaly Detection in Industrial Control Systems
    Raman, M. R. Gauthama
    Mathur, Aditya P.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (09): : 6003 - 6014
  • [23] A hybrid physics-based and data-driven method for gear contact fatigue life prediction
    Zhou, Changjiang
    Wang, Haoye
    Hou, Shengwen
    Han, Yong
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 175
  • [24] Hybrid data-driven physics-based model fusion framework for tool wear prediction
    Houman Hanachi
    Wennian Yu
    Il Yong Kim
    Jie Liu
    Chris K. Mechefske
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 2861 - 2872
  • [25] Physics-Based Modeling for Hybrid Data-Driven Models to Estimate SNR in WDM Systems
    Mansour, Mariane
    Faruk, Md Saifuddin
    Laperle, Charles
    Reimer, Michael
    O'Sullivan, Maurice
    Savory, Seb J.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (17) : 5928 - 5935
  • [26] Hybrid data-driven physics-based model fusion framework for tool wear prediction
    Hanachi, Houman
    Yu, Wennian
    Kim, Il Yong
    Liu, Jie
    Mechefske, Chris K.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (9-12): : 2861 - 2872
  • [27] Hybrid physics-based and data-driven models for smart manufacturing: Modelling, simulation, and explainability
    Wang, Jinjiang
    Li, Yilin
    Gao, Robert X.
    Zhang, Fengli
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 63 : 381 - 391
  • [28] Combining physics-based and data-driven methods in metal stamping
    Abanda, Amaia
    Arroyo, Amaia
    Boto, Fernando
    Esteras, Miguel
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 36 (4) : 2583 - 2599
  • [29] Autonomous Golf Putting with Data-Driven and Physics-Based Methods
    Junker, Annika
    Fittkau, Niklas
    Timmermann, Julia
    Traechtler, Ansgar
    2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, : 134 - 141
  • [30] Efficacy and Reliability of Data-Driven and Physics-Based Simulation Models
    Haas, Kyle
    STRUCTURES CONGRESS 2020, 2020, : 720 - 729