Hybrid Physics-Based and Data-Driven Prognostic for PEM Fuel Cells Considering Voltage Recovery

被引:9
|
作者
Wu, Hangyu [1 ,2 ]
Wei, Wang [3 ]
Li, Yang [4 ]
Zhu, Wenchao [5 ,6 ]
Xie, Changjun [1 ,2 ]
Gooi, Hoay Beng [7 ]
机构
[1] Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[3] Wuhan Univ Technol, Sch Hubei Key Lab Adv Technol Automot Components, Wuhan 430070, Peoples R China
[4] Dept Elect Engn, S-41296 Gothenburg, Sweden
[5] State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[6] Hubei Prov Key Lab Fuel Cells, Wuhan 430070, Peoples R China
[7] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
Predictive models; Aging; Data models; Fuel cells; Degradation; Market research; Voltage; Fuel cell; aging prediction; hybrid method; voltage recovery; USEFUL LIFE PREDICTION; DEGRADATION PREDICTION; FILTER;
D O I
10.1109/TEC.2023.3311460
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Predicting the degradation behaviors is challenging and essential for prognostics and health management for proton exchange membrane fuel cells (PEMFCs). However, existing methods based on data-driven or model-based methods can face the problem of significant performance inconsistencies in different prediction stages. We investigate the cause and attribute it to the ignorance of the voltage recovery phenomena of PEMFCs observed during the frequent start-stop processes during practical applications. A novel prognostic method is proposed to provide a more comprehensive analysis of PEMFC aging that integrates data-driven and model-based methods. Specifically, a physics-based aging model considering voltage recovery (PA-VR) is first reported as a model-based method to enhance the prediction effect at voltage mutation points. Then, the moving window method with iterative function is used to combine the data-driven method with the PA-VR model, which realizes the online update of model parameters. Finally, the weightings on individual approaches are dynamically determined at different stages throughout the PEMFC lifecycle. The proposed hybrid method achieves an effective improvement in prediction performance by combining the overall degradation trend predicted by the PA-VR model and the local dynamic characteristics predicted by the data-driven method.
引用
收藏
页码:601 / 612
页数:12
相关论文
共 50 条
  • [1] Physics-based and data-driven modelling and simulation of Solid Oxide Fuel Cells
    Langner, Eric
    El Hachemi, Mohamed
    El Hachemi, Mohamed
    Belouettar-Mathis, Elias
    Makradi, Ahmed
    Wallmersperger, Thomas
    Gouttebroze, Sylvain
    Preisig, Heinz
    Andersen, Casper Welzel
    Shao, Qian
    Hu, Heng
    Belouettar, Salim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 96 : 962 - 983
  • [2] Physics-based and data-driven hybrid modeling in manufacturing: a review
    Kasilingam, Sathish
    Yang, Ruoyu
    Singh, Shubhendu Kumar
    Farahani, Mojtaba A.
    Rai, Rahul
    Wuest, Thorsten
    PRODUCTION AND MANUFACTURING RESEARCH-AN OPEN ACCESS JOURNAL, 2024, 12 (01):
  • [3] Physics-based Or Data-driven Models?
    Mason, Richard
    Hart's E and P, 2019, (April):
  • [4] Hybrid physics-based and data-driven impact localisation for composite laminates
    Xiao, Dong
    Sharif-Khodaei, Zahra
    Aliabadi, M. H.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 274
  • [5] Hybrid Physics-Based and Data-Driven Modelling for Vehicle Dynamics Simulation
    Valente, Giuseppe
    Perrelli, Michele
    Adduci, Rocco
    Cosco, Francesco
    Bossio, Roberto
    Mundo, Domenico
    ADVANCES IN ITALIAN MECHANISM SCIENCE, IFTOMM ITALY, VOL 2, 2024, 164 : 398 - 406
  • [6] Design of a Physics-Based and Data-Driven Hybrid Model for Predictive Maintenance
    Traini, Emiliano
    Bruno, Giulia
    Lombardi, Franco
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, PT V, 2021, 634 : 536 - 543
  • [7] Hybrid data-driven and physics-based modeling for viscosity prediction of ionic liquids
    Fan, Jing
    Dai, Zhengxing
    Cao, Jian
    Mu, Liwen
    Ji, Xiaoyan
    Lu, Xiaohua
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (12) : 1878 - 1890
  • [8] Hybrid Data-Driven and Physics-Based Modeling for Gas Turbine Prescriptive Analytics
    Belov, Sergei
    Nikolaev, Sergei
    Uzhinsky, Ighor
    INTERNATIONAL JOURNAL OF TURBOMACHINERY PROPULSION AND POWER, 2020, 5 (04)
  • [9] Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models
    Nouri, Madyen
    Artozoul, Julien
    Caillaud, Aude
    Ammar, Amine
    Chinesta, Francisco
    Koser, Ole
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2022, 15 (03)
  • [10] Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models
    Madyen Nouri
    Julien Artozoul
    Aude Caillaud
    Amine Ammar
    Francisco Chinesta
    Ole Köser
    International Journal of Material Forming, 2022, 15