The Influence of Manganese Slag on the Properties of Ultra-High-Performance Concrete

被引:1
|
作者
Xu, Wenyu [1 ]
Yu, Jia [1 ]
Wang, Hui [2 ]
机构
[1] Nanjing Univ Sci & Technol, Zijin Coll, Sch Intelligent Mfg, Nanjing 210023, Peoples R China
[2] Ningbo Univ, Sch Civil Engn & Geog Environm, Ningbo 315000, Peoples R China
关键词
manganese slag; ultra-high-performance concrete; plastic viscosity; energy spectrum analysis; X-ray diffraction; MECHANICAL-PROPERTIES; REMOVAL; DESIGN; SHRINKAGE; ADSORBENT; RHEOLOGY; WASTE; FIBER; WATER; IRON;
D O I
10.3390/ma17020497
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese slag (MS) is a kind of chemical waste, which may pollute the environment if conventional handling methods (stacking and landfill) are applied. Ultra-high-performance concrete (UHPC)-with considerably high compactness and strength-can be used not only as a special concrete material, but also to solidify the toxic substances in solid waste. This study proposes the addition of MS to UHPC, where the mass ratio of MS varies from 0% to 40% in the total mass of MS and silica fume. The effects of MS on the fluidity, plastic viscosity, and yield shear stress are investigated, and the flexural strength, compressive strength, and dry shrinkage rate of UHPC with MS are measured. X-ray diffraction (XRD) spectrum and energy spectrum analysis (EDS) diagrams are obtained to analyze the performance mechanism of the UHPC. A rheological study confirms that the slump flow increases with the increasing rate of 0-14.3%, while the yield shear stress and plastic viscosity decrease with the rates of 0-29.6% and 0-22.2%, respectively. The initial setting time increases with the mass ratio of MS by 0-14.3%, and MS has a positive effect on the flexural and compressive strengths of UHPC. In the early curing stage (less than 14 days), the increasing rate in the specimens increases with the curing age; meanwhile, when the curing age reaches 14 days or higher, the increasing rate decreases with increasing curing age. The compactness of UHPC is increased by adding MS. Furthermore, MS can increase the elements of Al and decrease crystals of Ca(OH)2 and calcium silicate hydrate in UHPC.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A Framework for Determining Direct Tensile Properties of Ultra-High-Performance Concrete
    Bonetti, Rodolfo
    Bayrak, Oguzhan
    Folliard, Kevin
    Drimalas, Thanos
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 87 - 96
  • [32] Mechanical Properties of Ultra-High-Performance Concrete with Steel and PVA Fibers
    Jacintho, Ana Elisabete P. G. A.
    Santos, Andre M. dos
    Santos Junior, Gilvan B.
    Krahl, Pablo A.
    Barbante, Grazielle G.
    Pimentel, Lia L.
    Forti, Nadia C. S.
    MATERIALS, 2024, 17 (23)
  • [33] Testing of ultra-high-performance concrete girders
    Hartman, J
    Graybeal, B
    PCI JOURNAL, 2002, 47 (01): : 148 - 149
  • [34] Developing Sustainable Ultra-High-Performance Concrete
    Kareem, Rahman
    Alsalman, Ali
    Dang, Canh N.
    Marti-Vargas, Jose R.
    Hale, W. Micah
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 127 - 136
  • [35] Electrical properties of ultra-high-performance concrete with various reinforcing fibers
    Qin, Hanyao
    Ding, Siqi
    Qiu, Liangsheng
    Han, Baoguo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [36] Research on the Flexural Performance of Steel Pipe Steel Slag Powder Ultra-High-Performance Concrete Components
    Tang, Xianyuan
    Feng, Chenzhuo
    Chang, Jin
    Ma, Jieling
    Hu, Xiansong
    MATERIALS, 2023, 16 (17)
  • [37] Impact of Materials, Proportioning, and Curing on Ultra-High-Performance Concrete Properties
    Carey, A. S.
    Howard, I. L.
    Scott, D. A.
    Moser, R. D.
    Shannon, J.
    Knizley, A.
    ACI MATERIALS JOURNAL, 2020, 117 (01) : 213 - 222
  • [38] Interface Shear of Ultra-High-Performance Concrete
    Muzenski, Scott
    Haber, Zachary B.
    Graybeal, Benjamin
    ACI STRUCTURAL JOURNAL, 2022, 119 (01) : 267 - +
  • [39] Tensile characteristics of ultra-high-performance concrete
    Hu, Aoxiang
    Yu, Jing
    Liang, Xingwen
    Shi, Qingxuan
    MAGAZINE OF CONCRETE RESEARCH, 2018, 70 (06) : 314 - 324
  • [40] Bond of Reinforcement in Ultra-High-Performance Concrete
    Yuan, Jiqiu
    Graybeal, Benjamin
    ACI STRUCTURAL JOURNAL, 2015, 112 (06) : 851 - 860