G6PC1 and G6PC2 influence G6P flux but not HSD11B1 activity

被引:1
|
作者
Hawes, Emily M. [1 ]
Boortz, Kayla A. [1 ]
Oeser, James K. [1 ]
O'Rourke, Margaret L. [1 ]
O'Brien, Richard M. [1 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37235 USA
关键词
islet; liver; glucose metabolism; glucose-6-phosphate; glucose-6-phosphatase; 11 beta-hydroxysteroid dehydrogenase type 1; hexose-6-phosphate dehydrogenase; 11-BETA-HYDROXYSTEROID DEHYDROGENASE TYPE-1; FASTING PLASMA-GLUCOSE; PITUITARY-ADRENAL AXIS; CATALYTIC SUBUNIT; BLOOD-GLUCOSE; HEXOSE-6-PHOSPHATE DEHYDROGENASE; METABOLIC SYNDROME; INSULIN-SECRETION; GENE; GLUCOSE-6-PHOSPHATASE;
D O I
10.1530/JME-23-0070
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In the endoplasmic reticulum (ER) lumen, glucose-6-phosphatase catalytic subunit 1 and 2 (G6PC1; G6PC2) hydrolyze glucose-6-phosphate (G6P) to glucose and inorganic phosphate whereas hexose-6-phosphate dehydrogenase (H6PD) hydrolyzes G6P to 6-phosphogluconate (6PG) in a reaction that generates NADPH. 11 beta-hydroxysteroid dehydrogenase type 1 (HSD11B1) utilizes this NADPH to convert inactive cortisone to cortisol. HSD11B1 inhibitors improve insulin sensitivity whereas G6PC inhibitors are predicted to lower fasting blood glucose (FBG). This study investigated whether G6PC1 and G6PC2 influence G6P flux through H6PD and vice versa. Using a novel transcriptional assay that utilizes separate fusion genes to quantitate glucocorticoid and glucose signaling, we show that overexpression of H6PD and HSD11B1 in the islet-derived 832/13 cell line activated glucocorticoid-stimulated fusion gene expression. Overexpression of HSD11B1 blunted glucose-stimulated fusion gene expression independently of altered G6P flux. While overexpression of G6PC1 and G6PC2 blunted glucose-stimulated fusion gene expression, it had minimal effect on glucocorticoid-stimulated fusion gene expression. In the liver-derived HepG2 cell line, overexpression of H6PD and HSD11B1 activated glucocorticoid-stimulated fusion gene expression but overexpression of G6PC1 and G6PC2 had no effect. In rodents, HSD11B1 converts 11-dehydrocorticosterone (11-DHC) to corticosterone. Studies in wild-type and G6pc2 knockout mice treated with 11-DHC for 5 weeks reveal metabolic changes unaffected by the absence of G6PC2. These data suggest that HSD11B1 activity is not significantly affected by the presence or absence of G6PC1 or G6PC2. As such, G6PC1 and G6PC2 inhibitors are predicted to have beneficial effects by reducing FBG without causing a deleterious increase in glucocorticoid signaling.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Mapping I-Ag7 restricted epitopes in murine G6PC2
    Tao Yang
    Anita C. Hohenstein
    Catherine E. Lee
    John C. Hutton
    Howard W. Davidson
    Immunologic Research, 2013, 55 : 91 - 99
  • [22] A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels
    Bouatia-Naji, Nabila
    Rocheleau, Ghislain
    Van Lommel, Leentje
    Lemaire, Katleen
    Schuit, Frans
    Cavalcanti-Proenca, Christine
    Marchand, Marion
    Hartikainen, Anna-Liisa
    Sovio, Ulla
    De Graeve, Franck
    Rung, Johan
    Vaxillaire, Martine
    Tichet, Jean
    Marre, Michel
    Balkau, Beverley
    Weill, Jacques
    Elliott, Paul
    Jarvelin, Marjo-Riitta
    Meyre, David
    Polychronakos, Constantin
    Dina, Christian
    Sladek, Robert
    Froguel, Philippe
    SCIENCE, 2008, 320 (5879) : 1085 - 1088
  • [23] G6PC2: A Negative Regulator of Basal Glucose-Stimulated Insulin Secretion
    Pound, Lynley D.
    Oeser, James K.
    O'Brien, Tracy P.
    Wang, Yingda
    Faulman, Chandler J.
    Dadi, Prasarma K.
    Jacobson, David A.
    Hutton, John C.
    McGuinness, Owen P.
    Shiota, Masakazu
    O'Brien, Richard M.
    DIABETES, 2013, 62 (05) : 1547 - 1556
  • [24] G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress
    Boortz, Kayla A.
    Syring, Kristen E.
    Dai, Chunhua
    Pound, Lynley D.
    Oeser, James K.
    Jacobson, David A.
    Wang, Jen-Chywan
    McGuinness, Owen P.
    Powers, Alvin C.
    O'Brien, Richard M.
    ENDOCRINOLOGY, 2016, 157 (08) : 3002 - 3008
  • [25] Mapping I-Ag7 restricted epitopes in murine G6PC2
    Yang, Tao
    Hohenstein, Anita C.
    Lee, Catherine E.
    Hutton, John C.
    Davidson, Howard W.
    IMMUNOLOGIC RESEARCH, 2013, 55 (1-3) : 91 - 99
  • [26] Predominance of rotavirus genotype G6P[11] in diarrhoeic lambs
    Gazal, Sabahat
    Taku, A. K.
    Kumar, Bablu
    VETERINARY JOURNAL, 2012, 193 (01): : 299 - 300
  • [27] G6PC2 controls glucagon secretion by defining the set point for glucose in pancreatic α cells
    Bahl, Varun
    Rifkind, Reut
    Waite, Eric
    Hamdan, Zenab
    May, Catherine Lee
    Manduchi, Elisabetta
    Voight, Benjamin F.
    Lee, Michelle Y. Y.
    Tigue, Mark
    Manuto, Nicholas
    Glaser, Benjamin
    Avrahami, Dana
    Kaestner, Klaus H.
    SCIENCE TRANSLATIONAL MEDICINE, 2025, 17 (779)
  • [28] Additive Effects of Genetic Variation in GCK and G6PC2 on Insulin Secretion and Fasting Glucose
    Li, Xia
    Shu, Yu-Hsing
    Xiang, Anny H.
    Trigo, Enrique
    Kuusisto, Johanna
    Hartiala, Jaana
    Swift, Amy J.
    Kawakubo, Miwa
    Stringham, Heather M.
    Bonnycastle, Lori L.
    Lawrence, Jean M.
    Laakso, Markku
    Allayee, Hooman
    Buchanan, Thomas A.
    Watanabe, Richard M.
    DIABETES, 2009, 58 (12) : 2946 - 2953
  • [29] Glucose-6-phosphatase (G6PC1) promoter polymorphism associated with glycogen storage disease type la among the Indian population
    Karthi, Sellamuthu
    Manimaran, Paramasivam
    Gandhimathi, Krishnan
    Ganesh, Ramasamy
    Varalakshmi, Perumal
    Ashokkumar, Balasubramaniem
    RSC ADVANCES, 2015, 5 (80): : 65297 - 65302
  • [30] Susceptibility to type 2 diabetes may be modulated by haplotypes in G6PC2, a target of positive selection
    Nasser M. Al-Daghri
    Chiara Pontremoli
    Rachele Cagliani
    Diego Forni
    Majed S. Alokail
    Omar S. Al-Attas
    Shaun Sabico
    Stefania Riva
    Mario Clerici
    Manuela Sironi
    BMC Evolutionary Biology, 17