A Collaborative Control Scheme for Smart Vehicles Based on Multi-Agent Deep Reinforcement Learning

被引:1
|
作者
Shi, Liyan [1 ]
Chen, Hairui [2 ]
机构
[1] Open Univ Henan, Sch Informat Engn & Artificial Intelligence, Zhengzhou 450046, Peoples R China
[2] Zhongyuan Univ Technol, Zhongyuan Petersburg Aviat Coll, Zhengzhou 450007, Peoples R China
关键词
Reinforcement learning; Control systems; Adaptation models; Roads; Optimization; Vehicle dynamics; Heuristic algorithms; Intelligent transportation systems; Collaborative control; smart vehicles; deep reinforcement learning; intelligent transportation systems; EDGE; SECURITY; INTERNET;
D O I
10.1109/ACCESS.2023.3312021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development of artificial intelligence and autonomous driving technology, the vehicle-road cooperative control system combined with artificial intelligence technology can provide more effective and adaptive traffic control solutions for intelligent transportation systems. Existing research works are confronted with two kinds of challenges. For one thing, traditional recurrent neural networks-based methods cannot model the long-time dependent information in traffic flow sequences. For another, the large sample correlation makes it difficult to optimize the trained strategies. In this paper, we propose a Multi-agent Deep Reinforcement Learning (MADRL)-based intelligent vehicle cooperative control method to deal remedy current gaps. To this end, a closed-loop control system of self-driving vehicles and signal controllers is used as the research object to achieve dynamic scheduling of traffic flow by MADRL. After designing relevant experimental validation, the feasibility of the method is verified in terms of both scheme comparison and operational effect analysis, which is a good aid to traffic signal timing. The simulation results show that the proposal can be well utilized to realize collaborative control of smart vehicles, and there is some performance improvement compared with several typical methods.
引用
收藏
页码:96221 / 96234
页数:14
相关论文
共 50 条
  • [21] Multi-Agent Deep Reinforcement Learning for content caching within the Internet of Vehicles
    Knari, Anas
    Derfouf, Mostapha
    Koulali, Mohammed-Amine
    Khoumsi, Ahmed
    AD HOC NETWORKS, 2024, 152
  • [22] Fair collaborative vehicle routing: A deep multi-agent reinforcement learning approach
    Mak, Stephen
    Xu, Liming
    Pearce, Tim
    Ostroumov, Michael
    Brintrup, Alexandra
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 157
  • [23] End-to-end Deep Reinforcement Learning for Multi-agent Collaborative Exploration
    Chen, Zichen
    Subagdja, Budhitama
    Tan, Ah-Hwee
    2019 IEEE INTERNATIONAL CONFERENCE ON AGENTS (ICA), 2019, : 99 - 102
  • [24] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC, 2022, 2022-July
  • [25] Eavesdropping Game Based on Multi-Agent Deep Reinforcement Learning
    Guo, Delin
    Tang, Lan
    Yang, Lvxi
    Liang, Ying-Chang
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [26] Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles
    Louati, Ali
    Louati, Hassen
    Kariri, Elham
    Neifar, Wafa
    Hassan, Mohamed K.
    Khairi, Mutaz H. H.
    Farahat, Mohammed A.
    El-Hoseny, Heba M.
    SUSTAINABILITY, 2024, 16 (05)
  • [27] Multi-agent Deep Reinforcement Learning collaborative Traffic Signal Control method considering intersection heterogeneity
    Bie, Yiming
    Ji, Yuting
    Ma, Dongfang
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 164
  • [28] Communicate with Traffic Lights and Vehicles Based on Multi-Agent Reinforcement Learning
    Wu, Qiang
    Zhi, Peng
    Wei, Yongqiang
    Zhang, Liang
    Wu, Jianqing
    Zhou, Qingguo
    Zhou, Qiang
    Gao, Pengfei
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 843 - 848
  • [29] Constraint-based multi-agent reinforcement learning for collaborative tasks
    Shang, Xiumin
    Xu, Tengyu
    Karamouzas, Ioannis
    Kallmann, Marcelo
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2023, 34 (3-4)
  • [30] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645